Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Pharmacol Biochem Behav ; 229: 173589, 2023 08.
Article in English | MEDLINE | ID: mdl-37348609

ABSTRACT

Schizophrenia is a severe and debilitating psychiatric disorder characterized by early cognitive deficits, emotional and behavioral abnormalities resulted by a dysfunctional gene x environment interaction. Genetic and epigenetic abnormalities in cortical parvalbumin-positive GABAergic interneurons lead to alterations in glutamate-mediated excitatory neurotransmission, synaptic plasticity, and neuronal development. Epigenetic alterations during pregnancy or early phases of postnatal life are associated with schizophrenia vulnerability as well as inflammatory processes which are at the basis of brain pathology. An epigenetic animal model of schizophrenia showed specific changes in promoter DNA methylation activity of genes related to schizophrenia such as reelin, BDNF and GAD67, and altered expression and function of mGlu2/3 receptors in the frontal cortex. Although antipsychotic medications represent the main treatment for schizophrenia and generally show an optimal efficacy profile for positive symptoms and relatively poor efficacy for negative or cognitive symptoms, a considerable percentage of individuals show poor response, do not achieve a complete remission, and approximately 30 % of patients show treatment-resistance. Here, we explore the potential role of epigenetic abnormalities linked to metabotropic glutamate 2/3 receptors changes in expression and function as key molecular factors underlying the difference in response to antipsychotics.


Subject(s)
Schizophrenia , Animals , Female , Pregnancy , Schizophrenia/drug therapy , Schizophrenia/genetics , Epigenesis, Genetic , DNA Methylation , Glutamic Acid/metabolism , Frontal Lobe/metabolism
2.
Curr Neuropharmacol ; 21(12): 2409-2423, 2023.
Article in English | MEDLINE | ID: mdl-36946488

ABSTRACT

Schizophrenia is a chronic and progressive disorder characterized by cognitive, emotional, and behavioral abnormalities associated with neuronal development and synaptic plasticity alterations. Genetic and epigenetic abnormalities in cortical parvalbumin-positive GABAergic interneurons and consequent alterations in glutamate-mediated excitatory neurotransmission during early neurodevelopment underlie schizophrenia manifestation and progression. Also, epigenetic alterations during pregnancy or early phases of postnatal life are associated with schizophrenia vulnerability and inflammatory processes, which are at the basis of brain pathology and a higher risk of comorbidities, including cardiovascular diseases and metabolic syndrome. In addition, schizophrenia patients adopt an unhealthy lifestyle and poor nutrition, leading to premature death. Here, I explored the role of functional nutrition as an integrated intervention for the long-term management of patients with schizophrenia. Several natural bioactive compounds in plant-based whole foods, including flavonoids, phytonutrients, vitamins, fatty acids, and minerals, modulate brain functioning by targeting neuroinflammation and improving cognitive decline. Although further clinical studies are needed, a functional diet rich in natural bioactive compounds might be effective in synergism with standard treatments to improve schizophrenia symptoms and reduce the risk of comorbidities.


Subject(s)
Cognitive Dysfunction , Schizophrenia , Female , Pregnancy , Humans , Schizophrenia/metabolism , Outpatients , Interneurons/metabolism , Interneurons/pathology , Cognitive Dysfunction/metabolism , Synaptic Transmission
3.
Adv Exp Med Biol ; 1411: 513-535, 2023.
Article in English | MEDLINE | ID: mdl-36949324

ABSTRACT

Peroxisome proliferator-activated receptors (PPARs) are nonsteroid nuclear receptors and transcription factors that regulate several neuroinflammatory and metabolic processes, recently involved in several neuropsychiatric conditions, including Alzheimer's disease, Parkinson's disease, major depressive disorder, post-traumatic stress disorder (PTSD), schizophrenia spectrum disorders, and autism spectrum disorders. PPARs are ligand-activated receptors that, following stimulation, induce neuroprotective effects by decreasing neuroinflammatory processes through inhibition of the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) expression and consequent suppression of pro-inflammatory cytokine production. PPARs heterodimerize with the retinoid X-receptor (RXR) and bind to PPAR-responsive regulatory elements (PPRE) in the promoter region of target genes involved in lipid metabolism, synthesis of cholesterol, catabolism of amino acids, and inflammation. Interestingly, PPARs are considered functionally part of the extended endocannabinoid (eCB) system that includes the classic eCB, anandamide, which act at cannabinoid receptor types 1 (CB1) and 2 (CB2) and are implicated in the pathophysiology of stress-related neuropsychiatric disorders. In preclinical studies, PPAR stimulation improves anxiety and depression-like behaviors by enhancing neurosteroid biosynthesis. The peculiar functional role of PPARs by exerting anti-inflammatory and neuroprotective effects and their expression localization in neurons and glial cells of corticolimbic circuits make them particularly interesting as novel therapeutic targets for several neuropsychiatric disorders characterized by underlying neuroinflammatory/neurodegenerative mechanisms. Herein, we discuss the pathological hallmarks of neuropsychiatric conditions associated with neuroinflammation, as well as the pivotal role of PPARs with a special emphasis on the subtype alpha (PPAR-α) as a suitable molecular target for therapeutic interventions.


Subject(s)
Depressive Disorder, Major , Neuroprotective Agents , Humans , Peroxisome Proliferator-Activated Receptors , Transcription Factors/metabolism , Receptors, Cytoplasmic and Nuclear
4.
Curr Neuropharmacol ; 20(12): 2354-2368, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35139800

ABSTRACT

BACKGROUND: mGlu5 metabotropic glutamate receptors are considered as candidate drug targets in the treatment of "monogenic" forms of autism spectrum disorders (ASD), such as Fragile- X syndrome (FXS). However, despite promising preclinical data, clinical trials using mGlu5 receptor antagonists to treat FXS showed no beneficial effects. OBJECTIVE: Here, we studied the expression and function of mGlu5 receptors in the striatum of adult BTBR mice, which model idiopathic forms of ASD, and behavioral phenotype. METHODS: Behavioral tests were associated with biochemistry analysis including qPCR and western blot for mRNA and protein expression. In vivo analysis of polyphosphoinositides hydrolysis was performed to study the mGlu5-mediated intracellular signaling in the striatum of adult BTBR mice under basal conditions and after MTEP exposure. RESULTS: Expression of mGlu5 receptors and mGlu5 receptor-mediated polyphosphoinositides hydrolysis were considerably high in the striatum of BTBR mice, sensitive to MTEP treatment. Changes in the expression of genes encoding for proteins involved in excitatory and inhibitory neurotransmission and synaptic plasticity, including Fmr1, Dlg4, Shank3, Brd4, bdnf-exon IX, Mef2c, and Arc, GriA2, Glun1, Nr2A, and Grm1, Grm2, GriA1, and Gad1 were also found. Behaviorally, BTBR mice showed high repetitive stereotypical behaviors, including self-grooming and deficits in social interactions. Acute or repeated injections with MTEP reversed the stereotyped behavior and the social interaction deficit. Similar effects were observed with the NMDA receptor blockers MK-801 or ketamine. CONCLUSION: These findings support a pivotal role of mGlu5 receptor abnormal expression and function in idiopathic ASD adult forms and unveil novel potential targets for therapy.


Subject(s)
Autism Spectrum Disorder , Mice , Animals , Autism Spectrum Disorder/drug therapy , Autism Spectrum Disorder/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/pharmacology , Nuclear Proteins/therapeutic use , Transcription Factors/metabolism , Mice, Inbred Strains , Corpus Striatum/metabolism , Disease Models, Animal , Microfilament Proteins/metabolism , Microfilament Proteins/pharmacology , Microfilament Proteins/therapeutic use , Nerve Tissue Proteins , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Fragile X Mental Retardation Protein/therapeutic use
5.
Int J Mol Sci ; 22(19)2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34639019

ABSTRACT

Social behavioral changes, including social isolation or loneliness, increase the risk for stress-related disorders, such as major depressive disorder, posttraumatic stress disorder (PTSD), and suicide, which share a strong neuroinflammatory etiopathogenetic component. The peroxisome-proliferator activated receptor (PPAR)-α, a newly discovered target involved in emotional behavior regulation, is a ligand-activated nuclear receptor and a transcription factor that, following stimulation by endogenous or synthetic ligands, may induce neuroprotective effects by modulating neuroinflammation, and improve anxiety and depression-like behaviors by enhancing neurosteroid biosynthesis. How stress affects epigenetic mechanisms with downstream effects on inflammation and emotional behavior remains poorly understood. We studied the effects of 4-week social isolation, using a mouse model of PTSD/suicide-like behavior, on hippocampal PPAR-α epigenetic modification. Decreased PPAR-α expression in the hippocampus of socially isolated mice was associated with increased levels of methylated cytosines of PPAR-α gene CpG-rich fragments and deficient neurosteroid biosynthesis. This effect was associated with increased histone deacetylases (HDAC)1, methyl-cytosine binding protein (MeCP)2 and decreased ten-eleven translocator (TET)2 expression, which favor hypermethylation. These alterations were associated with increased TLR-4 and pro-inflammatory markers (e.g., TNF-α,), mediated by NF-κB signaling in the hippocampus of aggressive mice. This study contributes the first evidence of stress-induced brain PPAR-α epigenetic regulation. Social isolation stress may constitute a risk factor for inflammatory-based psychiatric disorders associated with neurosteroid deficits, and targeting epigenetic marks linked to PPAR-α downregulation may offer a valid therapeutic approach.


Subject(s)
Aggression , Hippocampus/metabolism , Inflammation/etiology , PPAR alpha/genetics , Social Isolation , Stress, Psychological , Aggression/psychology , Animals , Behavior, Animal , Chromatin Assembly and Disassembly , CpG Islands , Disease Models, Animal , Disease Susceptibility , Epigenesis, Genetic , Gene Expression , Inflammation/metabolism , Inflammation Mediators/metabolism , Male , Methylation , Mice , PPAR alpha/metabolism , Promoter Regions, Genetic , Signal Transduction
6.
Neurobiol Stress ; 12: 100222, 2020 May.
Article in English | MEDLINE | ID: mdl-32426424

ABSTRACT

Allopregnanolone, a GABAergic neurosteroid and progesterone derivative, was recently approved by the Food and Drug Administration for the treatment of postpartum depression (PPD). Several mechanisms appear to be involved in the pathogenesis of PPD, including neuroendocrine dysfunction, neuroinflammation, neurotransmitter alterations, genetic and epigenetic modifications. Recent evidence highlights the higher risk for incidence of PPD in mothers exposed to unhealthy diets that negatively impact the microbiome composition and increase inflammation, all effects that are strongly correlated with mood disorders. Conversely, healthy diets have consistently been reported to decrease the risk of peripartum depression and to protect the body and brain against low-grade systemic chronic inflammation. Several bioactive micronutrients found in the so-called functional foods have been shown to play a relevant role in preventing neuroinflammation and depression, such as vitamins, minerals, omega-3 fatty acids and flavonoids. An intriguing molecular substrate linking functional foods with improvement of mood disorders may be represented by the peroxisome-proliferator activated receptor (PPAR) pathway, which can regulate allopregnanolone biosynthesis and brain-derived neurotropic factor (BDNF) and thereby may reduce inflammation and elevate mood. Herein, we discuss the potential connection between functional foods and PPAR and their role in preventing neuroinflammation and symptoms of PPD through neurosteroid regulation. We suggest that healthy diets by targeting the PPAR-neurosteroid axis and thereby decreasing inflammation may offer a suitable functional strategy to prevent and safely alleviate mood symptoms during the perinatal period.

7.
Front Psychiatry ; 10: 49, 2019.
Article in English | MEDLINE | ID: mdl-30890967

ABSTRACT

Metabotropic glutamate (mGlu) receptors are considered as candidate drug targets for the treatment of schizophrenia. These receptors form a family of eight subtypes (mGlu1 to -8), of which mGlu1 and -5 are coupled to Gq/11, and all other subtypes are coupled to Gi/o. Here, we discuss the possibility that selective ligands of individual mGlu receptor subtypes may be effective in controlling the core symptoms of schizophrenia, and, in some cases, may impact mechanisms underlying the progression of the disorder. Recent evidence indicates that activation of mGlu1 receptors inhibits dopamine release in the meso-striatal system. Hence, selective positive allosteric modulators (PAMs) of mGlu1 receptors hold promise for the treatment of positive symptoms of schizophrenia. mGlu5 receptors are widely expressed in the CNS and regulate the activity of cells that are involved in the pathophysiology of schizophrenia, such as cortical GABAergic interneurons and microglial cells. mGlu5 receptor PAMs are under development for the treatment of schizophrenia and cater the potential to act as disease modifiers by restraining neuroinflammation. mGlu2 receptors have attracted considerable interest because they negatively modulate 5-HT2A serotonin receptor signaling in the cerebral cortex. Both mGlu2 receptor PAMs and orthosteric mGlu2/3 receptor agonists display antipsychotic-like activity in animal models, and the latter drugs are inactive in mice lacking mGlu2 receptors. So far, mGlu3 receptors have been left apart as drug targets for schizophrenia. However, activation of mGlu3 receptors boosts mGlu5 receptor signaling, supports neuronal survival, and drives microglial cells toward an antiinflammatory phenotype. This strongly encourages research of mGlu3 receptors in schizophrenia. Finally, preclical studies suggest that mGlu4 receptors might be targeted by novel antipsychotic drugs, whereas studies of mGlu7 and mGlu8 receptors in animal models of psychosis are still at their infancy.

8.
Behav Brain Res ; 361: 139-150, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30521930

ABSTRACT

Diminished dopamine D1 stimulation may contribute to cognitive impairment in Alzheimer's and Parkinson's diseases, schizophrenia, and other neuropsychiatric disorders. However, orthosteric D1 receptor (D1R) agonists produce receptor desensitization and an inverted U-shaped dose-response curve, but positive allosteric modulators (PAMs) do not. We examined the cognitive effects of DETQ, a D1R PAM, in mice genetically modified to express the human D1 receptor ("hD1 mice"). Phencyclidine (PCP), a noncompetitive N-methyl-D-aspartate receptor antagonist, dosed seven days (subchronic), followed by withdrawal, produced a prolonged deficit in novel object recognition (NOR) memory, which was reversed by acute treatment with DETQ, with no evidence for an inverted U-shaped response. This was blocked by the D1R antagonist, SCH391660. Single doses of D1R agonists, SKF38393 and SKF82958, and the acetylcholinesterase inhibitor, rivastigmine, alone and the combination of subeffective doses of both DETQ and rivastigmine, also restored NOR in both subchronic PCP-treated in hD1 mice. DETQ increased cortical and hippocampal acetylcholine efflux after both acute and subchronic dosing in hD1 mice. Subchronic but not acute DETQ, inhibited glutamate and GABA efflux. DETQ-induced acetylcholine efflux was absent in subchronic PCP-treated mice, indicating that restoration of NOR in subchronic PCP-treated mice does not require cortical acetylcholine efflux. This is additional evidence that DETQ stimulates D1R without producing an inverted-U-shaped response curve and increases neurotransmitter release in the mPFC and HIP without causing tolerance. The ability of D1 PAMs to improve cognition in humans with neuropsychiatric disorders without evidence of tolerance or an inverted-U-shaped response curve needs to be established clinically.


Subject(s)
Isoquinolines/pharmacology , Receptors, Dopamine D1/drug effects , Recognition, Psychology/drug effects , Animals , Dopamine/pharmacology , Dopamine Agonists/pharmacology , Dopamine Antagonists/pharmacology , Gene Knock-In Techniques , Humans , Male , Memory/drug effects , Memory Disorders/drug therapy , Mice , Mice, Transgenic , Phencyclidine/pharmacology , Receptor, Serotonin, 5-HT1A , Receptors, Dopamine D1/genetics , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D1/physiology , Serotonin 5-HT1 Receptor Agonists/pharmacology
9.
Front Mol Neurosci ; 11: 423, 2018.
Article in English | MEDLINE | ID: mdl-30564095

ABSTRACT

Mice subjected to prenatal restraint stress (PRS mice) showed biochemical and behavioral abnormalities consistent with a schizophrenia-like phenotype (Matrisciano et al., 2016). PRS mice are characterized by increased DNA-methyltransferase 1 (DNMT1) and ten-eleven methylcytosine dioxygenase 1 (TET1) expression levels and exhibit an enrichment of 5-methylcytosine (5MC) and 5-hydroxymethylcytosine (5HMC) at neocortical GABAergic and glutamatergic gene promoters. Activation of group II metabotropic glutamate receptors (mGlu2 and-3 receptors) showed a potential epigenetically-induced antipsychotic activity by reversing the molecular and behavioral changes observed in PRS mice. This effect was most likely caused by the increase in the expression of growth arrest and DNA damage 45-ß (Gadd45-ß) protein, a molecular player of DNA demethylation, induced by the activation of mGlu2/3 receptors. This effect was mimicked by clozapine and valproate but not by haloperidol. Treatment with the selective mGlu2/3 receptors agonist LY379268 also increased the amount of Gadd45-ß bound to specific promoter regions of reelin, BDNF, and GAD67. A meta-analysis of several clinical trials showed that treatment with an orthosteric mGlu2/3 receptor agonist improved both positive and negative symptoms of schizophrenia, but only in patients who were early-in-disease and had not been treated with atypical antipsychotic drugs (Kinon et al., 2015). Our findings show that PRS mice are valuable model for the study of epigenetic mechanisms involved in the pathogenesis of schizophrenia and support the hypothesis that pharmacological modulation of mGlu2/3 receptors could impact the early phase of schizophrenia and related neurodevelopmental disorders by regulating epigenetic processes that lie at the core of the disorders.

10.
Neuropharmacology ; 115: 180-192, 2017 03 15.
Article in English | MEDLINE | ID: mdl-27140693

ABSTRACT

Metabotropic glutamate (mGlu) receptor ligands are under clinical development for the treatment of CNS disorders with high social and economic burden, such as schizophrenia, major depressive disorder (MDD), and Parkinson's disease (PD), and are promising drug candidates for the treatment of Alzheimer's disease (AD). So far, clinical studies have shown symptomatic effects of mGlu receptor ligands, but it is unknown whether these drugs act as disease modifiers or, at the opposite end, they accelerate disease progression by enhancing neurodegeneration. This is a fundamental issue in the treatment of PD and AD, and is also an emerging theme in the treatment of schizophrenia and MDD, in which neurodegeneration is also present and contribute to disease progression. Moving from in vitro data and preclinical studies, we discuss the potential impact of drugs targeting mGlu2, mGlu3, mGlu4 and mGlu5 receptor ligands on active neurodegeneration associated with AD, PD, schizophrenia, and MDD. We wish to highlight that our final comments on the best drug candidates are not influenced by commercial interests or by previous or ongoing collaborations with drug companies. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.


Subject(s)
Drug Discovery/trends , Mental Disorders/drug therapy , Mental Disorders/metabolism , Nervous System Diseases/drug therapy , Nervous System Diseases/metabolism , Receptors, Metabotropic Glutamate/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Drug Delivery Systems/trends , Excitatory Amino Acid Agonists/administration & dosage , Excitatory Amino Acid Agonists/metabolism , Excitatory Amino Acid Antagonists/administration & dosage , Excitatory Amino Acid Antagonists/metabolism , Humans , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Receptors, Metabotropic Glutamate/agonists , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Schizophrenia/drug therapy , Schizophrenia/metabolism
11.
Curr Neuropharmacol ; 14(1): 41-7, 2016.
Article in English | MEDLINE | ID: mdl-26813121

ABSTRACT

Schizophrenia and Bipolar Disorder are chronic psychiatric disorders, both considered as "major psychosis"; they are thought to share some pathogenetic factors involving a dysfunctional gene x environment interaction. Alterations in the glutamatergic transmission have been suggested to be involved in the pathogenesis of psychosis. Our group developed an epigenetic model of schizophrenia originated by Prenatal Restraint Stress (PRS) paradigm in mice. PRS mice developed some behavioral alterations observed in schizophrenic patients and classic animal models of schizophrenia, i.e. deficits in social interaction, locomotor activity and prepulse inhibition. They also showed specific changes in promoter DNA methylation activity of genes related to schizophrenia such as reelin, BDNF and GAD67, and altered expression and function of mGlu2/3 receptors in the frontal cortex. Interestingly, behavioral and molecular alterations were reversed by treatment with mGlu2/3 agonists. Based on these findings, we speculate that pharmacological modulation of these receptors could have a great impact on early phase treatment of psychosis together with the possibility to modulate specific epigenetic key protein involved in the development of psychosis. In this review, we will discuss in more details the specific features of the PRS mice as a suitable epigenetic model for major psychosis. We will then focus on key proteins of chromatin remodeling machinery as potential target for new pharmacological treatment through the activation of metabotropic glutamate receptors.


Subject(s)
Epigenesis, Genetic/physiology , Psychotic Disorders/metabolism , Receptors, Metabotropic Glutamate/metabolism , Animals , DNA Methylation/physiology , Frontal Lobe/metabolism , Frontal Lobe/pathology , Humans , Psychotic Disorders/genetics , Psychotic Disorders/pathology , Receptors, Metabotropic Glutamate/genetics , Reelin Protein
12.
Biol Psychiatry ; 77(6): 589-96, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25444166

ABSTRACT

BACKGROUND: Prenatal stress (PRS) is considered a risk factor for several neurodevelopmental disorders including schizophrenia (SZ). An animal model involving restraint stress of pregnant mice suggests that PRS induces epigenetic changes in specific GABAergic and glutamatergic genes likely to be implicated in SZ, including the gene for brain-derived neurotrophic factor (BDNF). METHODS: Studying adult offspring of pregnant mice subjected to PRS, we explored the long-term effects of PRS on behavior and on the expression of key chromatin remodeling factors including DNA methyltransferase 1, ten-eleven-translocation hydroxylases, methyl CpG binding protein 2, histone deacetylases, and histone methyltransferases and demethylase in the frontal cortex and hippocampus. We also measured the expression of BDNF. RESULTS: Adult PRS offspring demonstrate behavioral abnormalities suggestive of SZ and molecular changes similar to changes seen in postmortem brains of patients with SZ. This includes a significant increase in DNA methyltransferase 1 and ten-eleven-translocation hydroxylase 1 in the frontal cortex and hippocampus but not in cerebellum; no changes in histone deacetylases, histone methyltransferases and demethylases, or methyl CpG binding protein 2, and a significant decrease in Bdnf messenger RNA variants. The decrease of the corresponding Bdnf transcript level was accompanied by an enrichment of 5-methylcytosine and 5-hydroxymethylcytosine at Bdnf gene regulatory regions. In addition, the expression of Bdnf transcripts (IV and IX) correlated positively with social approach in both PRS mice and nonstressed mice. CONCLUSIONS: Because patients with psychosis and PRS mice show similar epigenetic signature, PRS mice may be a suitable model for understanding the behavioral and molecular epigenetic changes observed in patients with SZ.


Subject(s)
Brain-Derived Neurotrophic Factor/genetics , Epigenesis, Genetic , Prenatal Exposure Delayed Effects , Schizophrenia/genetics , Stress, Psychological/genetics , Animals , Brain-Derived Neurotrophic Factor/metabolism , Chromatin/metabolism , DNA Methylation , Disease Models, Animal , Female , Male , Mice , Motor Activity , Pregnancy , Restraint, Physical , Schizophrenia/physiopathology , Social Behavior , Stress, Psychological/physiopathology
13.
Neuropharmacology ; 86: 133-44, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25063582

ABSTRACT

LY379268 and LY354740, two agonists of mGlu2/3 metabotropic glutamate receptors, display different potencies in mouse models of schizophrenia. This differential effect of the two drugs remains unexplained. We performed a proteomic analysis in cultured cortical neurons challenged with either LY379268 or LY354740. Among the few proteins that were differentially influenced by the two drugs, Rab GDP dissociation inhibitor-ß (Rab GDIß) was down-regulated by LY379268 and showed a trend to an up-regulation in response to LY354740. In cultured hippocampal neurons, LY379268 selectively down-regulated the α isoform of Rab GDI. Rab GDI inhibits the activity of the synaptic vesicle-associated protein, Rab3A, and is reduced in the brain of schizophrenic patients. We examined the expression of Rab GDI in mice exposed to prenatal stress ("PRS mice"), which have been described as a putative model of schizophrenia. Rab GDIα protein levels were increased in the hippocampus of PRS mice at postnatal days (PND)1 and 21, but not at PND60. At PND21, PRS mice also showed a reduced depolarization-evoked [(3)H]d-aspartate release in hippocampal synaptosomes. The increase in Rab GDIα levels in the hippocampus of PRS mice was reversed by a 7-days treatment with LY379268 (1 or 10 mg/kg, i.p.), but not by treatment with equal doses of LY354740. These data strengthen the validity of PRS mice as a model of schizophrenia, and show for the first time a pharmacodynamic difference between LY379268 and LY354740 which might be taken into account in an attempt to explain the differential effect of the two drugs across mouse models.


Subject(s)
Amino Acids/pharmacology , Antipsychotic Agents/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds/pharmacology , Guanine Nucleotide Dissociation Inhibitors/metabolism , Schizophrenia/drug therapy , Schizophrenia/metabolism , Animals , Cells, Cultured , D-Aspartic Acid/metabolism , Disease Models, Animal , Epigenesis, Genetic , Female , Hippocampus/drug effects , Hippocampus/growth & development , Hippocampus/metabolism , Male , Mice , Pregnancy , Prenatal Exposure Delayed Effects , Proteomics/methods , Receptors, Metabotropic Glutamate/agonists , Receptors, Metabotropic Glutamate/metabolism , Restraint, Physical
14.
Proc Natl Acad Sci U S A ; 110(12): 4804-9, 2013 Mar 19.
Article in English | MEDLINE | ID: mdl-23382250

ABSTRACT

Epigenetic mechanisms are involved in the pathophysiology of depressive disorders and are unique potential targets for therapeutic intervention. The acetylating agent L-acetylcarnitine (LAC), a well-tolerated drug, behaves as an antidepressant by the epigenetic regulation of type 2 metabotropic glutamate (mGlu2) receptors. It caused a rapid and long-lasting antidepressant effect in Flinders Sensitive Line rats and in mice exposed to chronic unpredictable stress, which, respectively, model genetic and environmentally induced depression. In both models, LAC increased levels of acetylated H3K27 bound to the Grm2 promoter and also increased acetylation of NF-ĸB-p65 subunit, thereby enhancing the transcription of Grm2 gene encoding for the mGlu2 receptor in hippocampus and prefrontal cortex. Importantly, LAC reduced the immobility time in the forced swim test and increased sucrose preference as early as 3 d of treatment, whereas 14 d of treatment were needed for the antidepressant effect of chlorimipramine. Moreover, there was no tolerance to the action of LAC, and the antidepressant effect was still seen 2 wk after drug withdrawal. Conversely, NF-ĸB inhibition prevented the increase in mGlu2 expression induced by LAC, whereas the use of a histone deacetylase inhibitor supported the epigenetic control of mGlu2 expression. Finally, LAC had no effect on mGlu2 knockout mice exposed to chronic unpredictable stress, and a single injection of the mGlu2/3 receptor antagonist LY341495 partially blocked LAC action. The rapid and long-lasting antidepressant action of LAC strongly suggests a unique approach to examine the epigenetic hypothesis of depressive disorders in humans, paving the way for more efficient antidepressants with faster onset of action.


Subject(s)
Acetylcarnitine/pharmacology , Antidepressive Agents/pharmacology , Epigenesis, Genetic/drug effects , Hippocampus/metabolism , Nerve Tissue Proteins/biosynthesis , Prefrontal Cortex/metabolism , Receptors, Metabotropic Glutamate/biosynthesis , Acetylation/drug effects , Amino Acids , Animals , Clomipramine/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Hippocampus/pathology , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Histones/genetics , Histones/metabolism , Humans , Male , Mice , Mice, Knockout , NF-kappa B/genetics , NF-kappa B/metabolism , Nerve Tissue Proteins/genetics , Nootropic Agents/pharmacology , Prefrontal Cortex/pathology , Rats , Receptors, Metabotropic Glutamate/genetics , Selective Serotonin Reuptake Inhibitors/pharmacology , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Stress, Psychological/pathology , Time Factors , Xanthenes
15.
Neuropharmacology ; 68: 184-94, 2013 May.
Article in English | MEDLINE | ID: mdl-22564440

ABSTRACT

Human studies suggest that a variety of prenatal stressors are related to high risk for cognitive and behavioral abnormalities associated with psychiatric illness (Markham and Koenig, 2011). Recently, a downregulation in the expression of GABAergic genes (i.e., glutamic acid decarboxylase 67 and reelin) associated with DNA methyltransferase (DNMT) overexpression in GABAergic neurons has been regarded as a characteristic phenotypic component of the neuropathology of psychotic disorders (Guidotti et al., 2011). Here, we characterized mice exposed to prenatal restraint stress (PRS) in order to study neurochemical and behavioral abnormalities related to development of schizophrenia in the adult. Offspring born from non-stressed mothers (control mice) showed high levels of DNMT1 and 3a mRNA expression in the frontal cortex at birth, but these levels progressively decreased at post-natal days (PND) 7, 14, and 60. Offspring born from stressed mothers (PRS mice) showed increased levels of DNMTs compared to controls at all time-points studied including at birth and at PND 60. Using GAD67-GFP transgenic mice, we established that, in both control and PRS mice, high levels of DNMT1 and 3a were preferentially expressed in GABAergic neurons of frontal cortex and hippocampus. Importantly, the overexpression of DNMT in GABAergic neurons was associated with a decrease in reelin and GAD67 expression in PRS mice in early and adult life. PRS mice also showed an increased binding of DNMT1 and MeCP2, and an increase in 5-methylcytosine and 5-hydroxymethylcytosine in specific CpG-rich regions of the reelin and GAD67 promoters. Thus, the epigenetic changes in PRS mice are similar to changes observed in the post-mortem brains of psychiatric patients. Behaviorally, adult PRS mice showed hyperactivity and deficits in social interaction, prepulse inhibition, and fear conditioning that were corrected by administration of valproic acid (a histone deacetylase inhibitor) or clozapine (an atypical antipsychotic with DNA-demethylation activity). Taken together, these data show that prenatal stress in mice induces abnormalities in the DNA methylation network and in behaviors indicative of a schizophrenia-like phenotype. Thus, PRS mice may be a valid model for the investigation of new drugs for schizophrenia treatment targeting DNA methylation. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.


Subject(s)
GABAergic Neurons/metabolism , Interneurons/metabolism , Prenatal Exposure Delayed Effects/genetics , Schizophrenia/genetics , Stress, Physiological/physiology , Stress, Psychological/genetics , Animals , Behavior, Animal/physiology , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , Disease Models, Animal , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Female , Frontal Lobe/metabolism , Glutamate Decarboxylase/genetics , Glutamate Decarboxylase/metabolism , Hippocampus/metabolism , Mice , Motor Activity/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Phenotype , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reelin Protein , Restraint, Physical , Schizophrenia/etiology , Schizophrenia/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Social Behavior , Stress, Psychological/complications , Stress, Psychological/metabolism
16.
Neuropharmacology ; 66: 339-47, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22709946

ABSTRACT

Alterations of the glutamatergic system have been implicated in the pathophysiology and treatment of major depression. In order to investigate the expression and function of mGlu5 receptors in an animal model for treatment-resistant depression we used rats bred for congenital learned helplessness (cLH) and the control strain, bred for resistance against inescapable stress, congenitally. not learned helpless rats (cNLH). Western blot analysis showed an increased expression of mGlu5 (but not mGlu1a) receptors in the hippocampus of cLH rats, as compared with control cNLH rats. We also examined mGlu1/5 receptor signaling by in vivo measurement of DHPG-stimulated polyphosphoinositides hydrolysis. Stimulation of (3)H-inositolmonophosphate formation induced by i.c.v. injection of DHPG was enhanced by about 50% in the hippocampus of cLH rats. Correspondingly, DHPG-induced long-term depression (LTD) at Schaffer collateral/CA1 pyramidal cell synapses was amplified in hippocampal slices of cLH rats, whereas LTD induced by low frequency stimulation of the Schaffer collaterals did not change. Moreover, these effects were associated with decreased basal dendritic spine density of CA1 pyramidal cell in cLH rats. These data raise the attractive possibility that changes in the expression and function of mGlu5 receptors in the hippocampus might underlie the changes in synaptic plasticity associated with the depressive-like phenotype of cLH rats. However, chronic treatment of cLH rats with MPEP did not reverse learned helplessness, indicating that the enhanced mGlu5 receptor function is not the only player in the behavioral phenotype of this genetic model of depression. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.


Subject(s)
CA1 Region, Hippocampal/physiology , CA3 Region, Hippocampal/physiology , Helplessness, Learned , Long-Term Synaptic Depression/physiology , Receptors, Metabotropic Glutamate/physiology , Synapses/physiology , Animals , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/metabolism , CA3 Region, Hippocampal/drug effects , Dendritic Spines/ultrastructure , Electric Stimulation/methods , Excitatory Amino Acid Agonists/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Female , Hydrolysis/drug effects , Long-Term Synaptic Depression/drug effects , Male , Methoxyhydroxyphenylglycol/analogs & derivatives , Methoxyhydroxyphenylglycol/pharmacology , Phosphatidylinositol Phosphates/metabolism , Pyramidal Cells/cytology , Pyramidal Cells/drug effects , Pyramidal Cells/physiology , Pyridines/pharmacology , Rats , Rats, Sprague-Dawley , Receptor, Metabotropic Glutamate 5 , Receptors, Metabotropic Glutamate/agonists , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Receptors, Metabotropic Glutamate/biosynthesis , Synapses/drug effects , Synapses/metabolism
17.
Neuropharmacology ; 66: 40-52, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22640631

ABSTRACT

Major depressive disorder is among the most prevalent forms of mental illness. All currently available antidepressant medications have stemmed from study of the mechanisms of serendipitously discovered drugs, and only 30-50% of patients exhibit remission and frequently at least 3-4 weeks are required for manifestation of significant therapeutic effects. To overcome these drawbacks, discovering novel neuronal mechanisms of pathophysiology of depression as well as more effective treatments are necessary. This review focuses on the metabotropic glutamate (mGlu) receptors and their potential for drug targets for the treatment of depression. In particular, accumulating evidence has indicated the potential importance and usefulness of agents acting on mGlu2/3 and mGlu5 receptors. Preclinical and clinical evidence of mGlu2/3 receptor ligands and mGlu5 receptor antagonists are described. Moreover, their potential in clinic will be discussed in the context of neuronal mechanisms of ketamine, an agent recently demonstrated a robust effect for patients with treatment-resistant depression. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.


Subject(s)
Antidepressive Agents/therapeutic use , Depressive Disorder, Major/drug therapy , Excitatory Amino Acid Agents/therapeutic use , Molecular Targeted Therapy/methods , Receptors, Metabotropic Glutamate , Animals , Antidepressive Agents/pharmacology , Excitatory Amino Acid Agents/pharmacology , Humans , Ketamine/therapeutic use , Models, Neurological , Receptor, Metabotropic Glutamate 5 , Receptors, Metabotropic Glutamate/agonists , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Synaptic Transmission/drug effects
18.
J Neurochem ; 125(5): 649-56, 2013 Jun.
Article in English | MEDLINE | ID: mdl-22849384

ABSTRACT

The α2 δ subunit of voltage-sensitive calcium channels (VSCCs) is the molecular target of pregabalin and gabapentin, two drugs marked for the treatment of focal epilepsy, neuropathic pain, and anxiety disorders. Expression of the α2 δ subunit is up-regulated in the dorsal horns of the spinal cord in models of neuropathic pain, suggesting that plastic changes in the α2 δ subunit are associated with pathological states. Here, we examined the expression of the α2 δ-1 subunit in the amygdala, hippocampus, and frontal cortex in the trimethyltiazoline (TMT) mouse model of innate anxiety. TMT is a volatile molecule present in the feces of the rodent predator, red fox. Mice that show a high defensive behavior during TMT exposure developed anxiety-like behavior in the following 72 h, as shown by the light-dark test. Anxiety was associated with an increased expression of the α2 δ-1 subunit of VSCCs in the amygdaloid complex at all times following TMT exposure (4, 24, and 72 h). No changes in the α2 δ-1 protein levels were seen in the hippocampus and frontal cortex of mice exposed to TMT. Pregabalin (30 mg/kg, i.p.) reduced anxiety-like behavior in TMT-exposed mice, but not in control mice. These data offer the first demonstration that the α2 δ-1 subunit of VSCCs undergoes plastic changes in a model of innate anxiety, and supports the use of pregabalin as a disease-dependent drug in the treatment of anxiety disorders.


Subject(s)
Amygdala/metabolism , Anxiety/metabolism , Calcium Channels/biosynthesis , Gene Expression Regulation , Odorants , Predatory Behavior/physiology , Animals , Anxiety/psychology , Calcium Channels/genetics , Foxes , Male , Mice , Up-Regulation/genetics
19.
Neuropsychopharmacology ; 37(4): 929-38, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22089319

ABSTRACT

Prenatal exposure to restraint stress causes long-lasting changes in neuroplasticity that likely reflect pathological modifications triggered by early-life stress. We found that the offspring of dams exposed to repeated episodes of restraint stress during pregnancy (here named 'prenatal restraint stress mice' or 'PRS mice') developed a schizophrenia-like phenotype, characterized by a decreased expression of brain-derived neurotrophic factor and glutamic acid decarboxylase 67, an increased expression of type-1 DNA methyl transferase (DNMT1) in the frontal cortex, and a deficit in social interaction, locomotor activity, and prepulse inhibition. PRS mice also showed a marked decrease in metabotropic glutamate 2 (mGlu2) and mGlu3 receptor mRNA and protein levels in the frontal cortex, which was manifested at birth and persisted in adult life. This decrease was associated with an increased binding of DNMT1 to CpG-rich regions of mGlu2 and mGlu3 receptor promoters and an increased binding of MeCP2 to the mGlu2 receptor promoter. Systemic treatment with the selective mGlu2/3 receptor agonist LY379268 (0.5 mg/kg, i.p., twice daily for 5 days), corrected all the biochemical and behavioral abnormalities shown in PRS mice. Our data show for the first time that PRS induces a schizophrenia-like phenotype in mice, and suggest that epigenetic changes in mGlu2 and mGlu3 receptors lie at the core of the pathological programming induced by early-life stress.


Subject(s)
Prenatal Exposure Delayed Effects/metabolism , Receptors, Metabotropic Glutamate/metabolism , Schizophrenia/metabolism , Stress, Psychological/metabolism , Amino Acids/pharmacology , Animals , Animals, Newborn , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Disease Models, Animal , Female , Male , Mice , Pregnancy , Prenatal Exposure Delayed Effects/genetics , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Receptors, Metabotropic Glutamate/deficiency , Restraint, Physical/adverse effects , Restraint, Physical/psychology , Schizophrenia/drug therapy , Schizophrenia/etiology , Stress, Psychological/complications
20.
Neuropsychopharmacology ; 37(2): 531-42, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22048458

ABSTRACT

Aberrant neocortical DNA methylation has been suggested to be a pathophysiological contributor to psychotic disorders. Recently, a growth arrest and DNA-damage-inducible, beta (GADD45b) protein-coordinated DNA demethylation pathway, utilizing cytidine deaminases and thymidine glycosylases, has been identified in the brain. We measured expression of several members of this pathway in parietal cortical samples from the Stanley Foundation Neuropathology Consortium (SFNC) cohort. We find an increase in GADD45b mRNA and protein in patients with psychosis. In immunohistochemistry experiments using samples from the Harvard Brain Tissue Resource Center, we report an increased number of GADD45b-stained cells in prefrontal cortical layers II, III, and V in psychotic patients. Brain-derived neurotrophic factor IX (BDNF IXabcd) was selected as a readout gene to determine the effects of GADD45b expression and promoter binding. We find that there is less GADD45b binding to the BDNF IXabcd promoter in psychotic subjects. Further, there is reduced BDNF IXabcd mRNA expression, and an increase in 5-methylcytosine and 5-hydroxymethylcytosine at its promoter. On the basis of these results, we conclude that GADD45b may be increased in psychosis compensatory to its inability to access gene promoter regions.


Subject(s)
Antigens, Differentiation/biosynthesis , DNA Methylation/genetics , Psychotic Disorders/genetics , Psychotic Disorders/metabolism , 5-Methylcytosine/metabolism , Adult , Antigens, Differentiation/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Case-Control Studies , Cytosine/analogs & derivatives , Cytosine/metabolism , Female , Gene Expression/physiology , Humans , Male , Middle Aged , Parietal Lobe/metabolism , Prefrontal Cortex/metabolism , Promoter Regions, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...