Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Bioanal Chem ; 415(16): 3057-3071, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37004549

ABSTRACT

During its 25 years of existence, the Inorganic Analysis Working Group of the Consultative Committee for Amount of Substance: Metrology in Chemistry and Biology (CCQM IAWG) has achieved much in establishing comparability of measurement results. Impressive work has been done on comparison exercises related to real-world problems in fields such as ecology, food, or health. In more recent attempts, measurements and comparisons were focused on calibration solutions which are the basis of most inorganic chemical measurements. This contribution deals with the question of how to achieve full and transparent SI traceability for the values carried by such solutions. Within this framework, the use of classical primary methods (CPMs) is compared to the use of a primary difference method (PDM). PDM is a method with a dual character, namely a metrological method with a primary character, based on the bundling of many measurement methods for individual impurities, which lead to materials with certified content of the main component. As in classical methods, where small corrections for interferences are accepted, in PDM, many small corrections are bundled. In contrast to classical methods, the PDM is universally applicable to all elements in principle. Both approaches can be used to certify the purity (expressed as mass fraction of the main element) of a high-purity material. This is where the metrological need of National Metrology Institutes (NMIs) for analytical methods meet the challenges of analytical methods. In terms of methods, glow discharge mass spectrometry (GMDS) with sufficient uncertainties for sufficiently small impurity contents is particularly noteworthy for the certification of primary transfer standards (PTS), and isotope dilution mass spectrometry (IDMS), which particularly benefits from PTS (back-spikes) with small uncertainties, is particularly noteworthy for the application. The corresponding relative uncertainty which can be achieved using the PDM is very low (< 10-4). Acting as PTS, they represent the link between the material aspect of the primary calibration solutions and the immaterial world of the International System of Units (SI). The underlying concepts are discussed, the current status of implementation is summarised, and a roadmap of the necessary future activities in inorganic analytical chemistry is sketched. It has to be noted that smaller measurement uncertainties of the purity of high-purity materials not only have a positive effect on chemical measurements, but also trigger new developments and findings in other disciplines such as thermometry or materials science. Primary Transfer Standards (PTSs) are the link between the immaterial world of the International System of Units (SI) and the material aspects of the primary calibration solutions.


Subject(s)
Inorganic Chemicals , Gas Chromatography-Mass Spectrometry , Reference Standards , Mass Spectrometry/methods , Calibration
2.
Anal Bioanal Chem ; 395(5): 1471-80, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19756544

ABSTRACT

Solution-doped metal powder pellets as well as aspirated liquids were used as calibration samples to analyze pure copper and zinc certified reference materials (CRMs) by femtosecond laser ablation ICP-MS. It was demonstrated that calibration by copper pellets resulted in relative deviations up to 20%, whereas fs-LA-ICP-MS among copper-based CRMs led to inaccuracies in the same range unless nominal mass fractions were chosen to be <3 mg/kg. Calibration by zinc pellets generally provided better accuracy. Depending on the analyte considered, deviations below 10% were obtained even for mass fractions close to the limit of quantification. Our data, therefore, indicate solution-doped metal powder pellets to be suitable as calibration samples for fs-LA-ICP-MS of metals. Furthermore, the utilization of liquid standards for calibration was found to result in stronger deviations of up to 50% for both copper and zinc samples which, in addition, turned out to be dependent on the plasma conditions.

3.
Anal Bioanal Chem ; 389(7-8): 2287-96, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17940753

ABSTRACT

Glow discharge mass spectrometry (GD-MS) is an excellent technique for fast multi-element analysis of pure metals. In addition to metallic impurities, non-metals also can be determined. However, the sensitivity for these elements can be limited due to their high first ionization potentials. Elements with a first ionization potential close to or higher than that of argon, which is commonly used as discharge gas in GD-MS analysis, are ionized with small efficiency only. To improve the sensitivity of GD-MS for such elements, the influence of different glow-discharge parameters on the peak intensity of carbon, chlorine, fluorine, nitrogen, phosphorus, oxygen, and sulfur in pure copper samples was investigated with an Element GD (Thermo Fisher Scientific) GD-MS. Discharge current, discharge gas flow, and discharge gas composition, the last of which turned out to have the greatest effect on the measured intensities, were varied. Argon-helium mixtures were used because of the very high potential of He to ionize other elements, especially in terms of the high energy level of its metastable states. The effect of different Ar-He compositions on the peak intensity of various impurities in pure copper was studied. With Ar-He mixtures, excellent signal enhancements were achieved in comparison with use of pure Ar as discharge gas. In this way, traceable linear calibration curves for phosphorus and sulfur down to the microg kg(-1) range could be established with high sensitivity and very good linearity using pressed powder samples for calibration. This was not possible when pure argon alone was used as discharge gas.

4.
Anal Bioanal Chem ; 386(1): 125-41, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16896623

ABSTRACT

A new approach was developed for quantitative calibration in GD-MS which can afford reliable and metrologically traceable results for many trace elements and was exemplified for pure copper and pure iron. It can be assumed that the technique can be further improved and applied to the analysis of other pure metals. Pressed copper and iron powder samples were used to calibrate the glow discharge mass spectrometry applied to the analysis of pure copper and iron. The new type of glow discharge mass spectrometer--the Element GD (Thermo Electron Corporation)--was used with a Grimm-type discharge cell for flat samples. Two series of powder samples were prepared for each of the copper and iron matrixes. The powders were quantitatively doped with solutions of graduated and defined concentrations of 40 or 20 analytes, respectively. The mass fractions of the analytes in the dried and homogenized metal powder samples ranged from microg/kg levels up to 10 mg/kg levels. A special technique was developed to press the samples and to form mechanically stable pellets with low risk of contamination. Ion beam ratios of analyte ions to matrix ions were used as measurands. The calibration curves were determined and the linear correlation coefficients were calculated for different intervals of the curves. The linear correlation coefficients are very satisfactory for most of the calibration curves, which include the higher segments of mass fractions; however, they are less satisfactory for the lower segments of the calibration curves. Nevertheless, in many cases rather acceptable and rather promising values were achieved even for these lower segments, representing mass fractions of analytes at ultra-trace level. The comparison of the certified values of different reference materials with the measured values based on calibrations with the pressed powder samples led to deviations less than 30% for most of the considered examples.

5.
Anal Bioanal Chem ; 383(7-8): 1060-74, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16079974

ABSTRACT

The members of the committee NMP 264 "Chemical analysis of non-oxidic raw and basic materials" of the German Standards Institute (DIN) have organized two interlaboratory comparisons for multielement determination of trace elements in silicon carbide (SiC) powders via direct solid sampling methods. One of the interlaboratory comparisons was based on the application of inductively coupled plasma optical emission spectrometry with electrothermal vaporization (ETV ICP OES), and the other on the application of optical emission spectrometry with direct current arc (DC arc OES). The interlaboratory comparisons were organized and performed in the framework of the development of two standards related to "the determination of mass fractions of metallic impurities in powders and grain sizes of ceramic raw and basic materials" by both methods. SiC powders were used as typical examples of this category of material. The aim of the interlaboratory comparisons was to determine the repeatability and reproducibility of both analytical methods to be standardized. This was an important contribution to the practical applicability of both draft standards. Eight laboratories participated in the interlaboratory comparison with ETV ICP OES and nine in the interlaboratory comparison with DC arc OES. Ten analytes were investigated by ETV ICP OES and eleven by DC arc OES. Six different SiC powders were used for the calibration. The mass fractions of their relevant trace elements were determined after wet chemical digestion. All participants followed the analytical requirements described in the draft standards. In the calculation process, three of the calibration materials were used successively as analytical samples. This was managed in the following manner: the material that had just been used as the analytical sample was excluded from the calibration, so the five other materials were used to establish the calibration plot. The results from the interlaboratory comparisons were summarized and used to determine the repeatability and the reproducibility (expressed as standard deviations) of both methods. The calculation was carried out according to the related standard. The results are specified and discussed in this paper, as are the optimized analytical conditions determined and used by the authors of this paper. For both methods, the repeatability relative standard deviations were <25%, usually ~10%, and the reproducibility relative standard deviations were <35%, usually ~15%. These results were regarded as satifactory for both methods intended for rapid analysis of materials for which decomposition is difficult and time-consuming. Also described are some results from an interlaboratory comparison used to certify one of the materials that had been previously used for validation in both interlaboratory comparisons. Thirty laboratories (from eight countries) participated in this interlaboratory comparison for certification. As examples, accepted results are shown from laboratories that used ETV ICP OES or DC arc OES and had performed calibrations by using solutions or oxides, respectively. The certified mass fractions of the certified reference materials were also compared with the mass fractions determined in the interlaboratory comparisons performed within the framework of method standardization. Good agreement was found for most of the analytes.


Subject(s)
Carbon Compounds, Inorganic/analysis , Electrochemistry/methods , Silicon Compounds/analysis , Spectrophotometry/methods , Trace Elements/analysis , Calibration , Electrochemistry/instrumentation , Metals, Heavy/analysis , Metals, Light/analysis , Nanotechnology , Reference Standards , Reproducibility of Results , Sensitivity and Specificity , Spectrophotometry/instrumentation , Temperature , Volatilization
6.
Anal Bioanal Chem ; 381(1): 28-9, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15599718
SELECTION OF CITATIONS
SEARCH DETAIL
...