Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Naunyn Schmiedebergs Arch Pharmacol ; 394(1): 73-84, 2021 01.
Article in English | MEDLINE | ID: mdl-32808069

ABSTRACT

PURPOSE: Intracranial hemorrhage (ICH) is a devastating disease with high mortality and morbidity. After ICH, iron released from the hematoma plays a crucial role in secondary brain injury. Deferasirox (DFR) is a trivalent iron chelator, which was approved to treat iron overload syndrome after transfusion. The aim of the present study was to investigate the protective effects of DFR in both in vitro and in vivo ICH models. METHODS: Using a hemin-induced SH-SY5Y cell damage model, we performed an intracellular bivalent iron (Fe2+) accumulation assay, cell death assay, oxidative stress assessments, and Western blotting analysis. Moreover, the effects of DFR intraventricular administration on hematoma, neurological deficits, and histological alteration were evaluated in an in vivo ICH mouse model by collagenase. RESULTS: DFR significantly suppressed the intracellular Fe2+ accumulation and cell death caused by hemin exposure. These effects were related to the suppression of both reactive oxygen species and lipid peroxidation over-production. In Western blotting analysis, hemin increased the expression of ferritin (an iron storage protein), LC3 and p62 (autophagy-related markers), phosphorylated p38 (a stress response protein), and cleaved-caspase3 and cleaved-poly (adenosine diphosphate ribose) polymerase (PARP) (apoptosis-related makers). However, DFR suppressed the increase of these proteins. In addition, DFR attenuated the neurological deficits until 7 days after ICH without affecting hematoma and injury area. Furthermore, DFR also suppressed microglia/macrophage activation in peri-hematoma area at 3 days after ICH. CONCLUSION: These findings indicate that DFR might be a useful therapeutic agent for the therapy of ICH.


Subject(s)
Antioxidants/therapeutic use , Deferasirox/therapeutic use , Hemorrhagic Stroke/drug therapy , Iron Chelating Agents/therapeutic use , Neuroprotective Agents/therapeutic use , Animals , Antioxidants/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Brain/drug effects , Brain/pathology , Cell Death/drug effects , Cell Line, Tumor , Deferasirox/pharmacology , Disease Models, Animal , Hemorrhagic Stroke/pathology , Humans , Iron/metabolism , Iron Chelating Agents/pharmacology , Male , Mice , Neurons/drug effects , Neurons/metabolism , Neuroprotective Agents/pharmacology , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...