Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IBRO Neurosci Rep ; 17: 32-37, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38910907

ABSTRACT

Visual errors induced by movement drive implicit corrections of that movement. When similar errors are experienced consecutively, does sensitivity to the error remain consistent each time? This study aimed to investigate the modulation of implicit error sensitivity through continuous exposure to the same errors. In the reaching task using visual error-clamp feedback, participants were presented with the same error in direction and magnitude for four consecutive trials. We found that implicit error sensitivity decreased after exposure to the second error. These results indicate that when visual errors occur consecutively, the sensorimotor system exhibits different responses, even for identical errors. The continuity of errors may be a factor that modulates error sensitivity.

2.
Exp Brain Res ; 241(8): 2125-2132, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37468766

ABSTRACT

Our movements and movement outcomes are disturbed by environmental changes, leading to errors. During ongoing environmental changes, people should correct their movement using sensory feedback. However, when the changes are momentary, corrections based on sensory feedback are undesirable. Previous studies have suggested that implicit motor adaptation takes place despite the realization that the presented visual feedback should be ignored. Although these studies created experimental situations in which participants had to continuously ignore the presented visual feedback, in daily lives, people intermittently encounter opportunities to ignore sensory feedback. In this study, by intermittently presenting visual error clamp feedback, always offset from a target by 16° counterclockwise, regardless of the actual movement in a reaching experiment, we provided intermittent opportunities to ignore the visual feedback. We found that in the trials conducted immediately after presenting the visual error clamp feedback, reaching movements shifted in the direction opposite to the feedback, which is a hallmark of implicit motor adaptation. Moreover, the magnitude of the shift was significantly correlated with the rate of motor adaptation to gradual changes in the environment. Therefore, the results suggest that people unintentionally react to momentary environmental changes, which should be ignored. In addition, the sensitivity to momentary changes is greater in people who can quickly adapt to gradual environmental changes.


Subject(s)
Learning , Psychomotor Performance , Humans , Movement , Adaptation, Physiological , Feedback , Feedback, Sensory , Visual Perception
3.
Biology (Basel) ; 12(3)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36979096

ABSTRACT

Previous studies have demonstrated the effects of motor variability on motor adaptation. However, their findings have been inconsistent, suggesting that various factors affect the relationship between motor variability and adaptation. This study focused on the size of errors driving motor adaptation as one of the factors and examined the relationship between different error sizes. Thirty-one healthy young adults participated in a visuomotor task in which they made fast-reaching movements toward a target. Motor variability was measured in the baseline phase when a veridical feedback cursor was presented. In the adaptation phase, the feedback cursor was sometimes not reflected in the hand position and deviated from the target by 0°, 3°, 6°, or 12° counterclockwise or clockwise (i.e., error-clamp feedback). Movements during trials following trials with error-clamp feedback were measured to quantify implicit adaptation. Implicit adaptation was driven by errors presented through error-clamp feedback. Moreover, motor variability significantly correlated with implicit adaptation driven by a 12° error. The results suggested that motor variability accelerates implicit adaptation when a larger error occurs. As such a trend was not observed when smaller errors occurred, the relationship between motor variability and motor adaptation might have been affected by the error size driving implicit adaptation.

SELECTION OF CITATIONS
SEARCH DETAIL
...