Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Gene ; 833: 146599, 2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35598681

ABSTRACT

DNA double-strand break (DSB) that is one of the most serious DNA lesions is mainly repaired by two mutually exclusive pathways, homologous recombination and non-homologous end-joining. Proper choice of DSB repair pathway, in which recruitment of 53BP1 to chromatin around DSB sites plays a pivotal role, is crucial for maintaining genome integrity. Ubiquitylations of histone H2A and H2AX on Lys15 are prerequisite for 53BP1 loading onto chromatin. Although ubiquitylation mechanism of H2A and H2AX had been extensively studied, mechanism regulating deubiquitylation of γH2AX that is a phosphorylated form of H2AX remains elusive. Here, we identified USP49 as a novel deubiquitylating enzyme targeting DSB-induced γH2AX ubiquitylation. Over-expressed USP49 suppressed ubiquitylation of γH2AX in an enzymatic activity-dependent manner. Catalytic dead mutant of USP49 interacted and colocalized with γH2AX. Consequently, over-expression of USP49 inhibited the DSB-induced foci formation of 53BP1 and resulted in higher cell sensitivity to DSB-inducing drug treatment. Furthermore, endogenous USP49 protein was degraded via the proteasome upon DSB induction, indicating the importance of modulating USP49 protein level for γH2AX deubiquitylation. Consistent with our cell-based data, kidney renal clear cell carcinoma patients with higher expression of USP49 showed poor survival rate in comparison to the patients with unaltered USP49 expression. In conclusion, these data suggest that fine tuning of protein level of USP49 and USP49-mediated deubiquitylation of γH2AX are important for genome integrity.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Histones , Ubiquitin Thiolesterase , Chromatin/genetics , DNA/metabolism , DNA Repair/genetics , DNA Repair/physiology , Histones/genetics , Histones/metabolism , Humans , Tumor Suppressor p53-Binding Protein 1/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Ubiquitination/genetics , Ubiquitination/physiology
2.
Oncogenesis ; 9(6): 60, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32541651

ABSTRACT

The nucleus of mammalian cells is compartmentalized by nuclear bodies such as nuclear speckles, however, involvement of nuclear bodies, especially nuclear speckles, in DNA repair has not been actively investigated. Here, our focused screen for nuclear speckle factors involved in homologous recombination (HR), which is a faithful DNA double-strand break (DSB) repair mechanism, identified transcription-related nuclear speckle factors as potential HR regulators. Among the top hits, we provide evidence showing that USP42, which is a hitherto unidentified nuclear speckles protein, promotes HR by facilitating BRCA1 recruitment to DSB sites and DNA-end resection. We further showed that USP42 localization to nuclear speckles is required for efficient HR. Furthermore, we established that USP42 interacts with DHX9, which possesses DNA-RNA helicase activity, and is required for efficient resolution of DSB-induced R-loop. In conclusion, our data propose a model in which USP42 facilitates BRCA1 loading to DSB sites, resolution of DSB-induced R-loop and preferential DSB repair by HR, indicating the importance of nuclear speckle-mediated regulation of DSB repair.

3.
Radiol Phys Technol ; 13(1): 27-36, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31686300

ABSTRACT

In digital mammography, which is used for the early detection of breast tumors, oversight may occur due to overlap between normal tissues and lesions. However, since digital breast tomosynthesis can acquire three-dimensional images, tissue overlapping is reduced, and, therefore, the shape and distribution of the lesions can be easily identified. However, it is often difficult to distinguish between benign and malignant breast lesions on images, and the diagnostic accuracy can be reduced due to complications from radiological interpretations, owing to acquisition of a higher number of images. In this study, we developed an automated classification method for diagnosing breast lesions on digital breast tomosynthesis images using radiomics to comprehensively analyze the radiological images. We extracted an analysis area centered on the lesion and calculated 70 radiomic features, including the shape of the lesion, existence of spicula, and texture information. The accuracy was compared by inputting the obtained radiomic features to four classifiers (support vector machine, random forest, naïve Bayes, and multi-layer perceptron), and the final classification result was obtained as an output using a classifier with high accuracy. To confirm the effectiveness of the proposed method, we used 24 cases with confirmed pathological diagnosis on biopsy. We also compared the classification results based on the presence or absence of dimension reduction using least absolute shrinkage and a selection operator (LASSO). As a result, when the support vector machine was used as a classifier, the correct identification rate of the benign tumors was 55% and that of malignant tumors was 84%, with best results. These results indicate that the proposed method may help in more accurately diagnosing cases that are difficult to classify on images.


Subject(s)
Breast Neoplasms/diagnostic imaging , Machine Learning , Mammography/methods , Pattern Recognition, Automated/methods , Algorithms , Bayes Theorem , Breast/diagnostic imaging , Diagnosis, Computer-Assisted , False Positive Reactions , Female , Humans , Image Processing, Computer-Assisted , ROC Curve , Radiographic Image Interpretation, Computer-Assisted/methods , Reproducibility of Results , Support Vector Machine
4.
Sci Rep ; 8(1): 17891, 2018 12 17.
Article in English | MEDLINE | ID: mdl-30559450

ABSTRACT

Non-homologous end-joining (NHEJ), which can promote genomic instability when dysfunctional, is a major DNA double-strand break (DSB) repair pathway. Although ubiquitylation of the core NHEJ factor, Ku (Ku70-Ku80), which senses broken DNA ends, is important for its removal from sites of damage upon completion of NHEJ, the mechanism regulating Ku ubiquitylation remains elusive. We provide evidence showing that the ubiquitin carboxyl-terminal hydrolase L3 (UCHL3) interacts with and directly deubiquitylates one of the Ku heterodimer subunits, Ku80. Additionally, depleting UCHL3 resulted in reduced Ku80 foci formation, Ku80 binding to chromatin after DSB induction, moderately sensitized cells to ionizing radiation and decreased NHEJ efficiencies. Mechanistically, we show that DNA damage induces UCHL3 phosphorylation, which is dependent on ATM, downstream NHEJ factors and UCHL3 catalytic activity. Furthermore, this phosphorylation destabilizes UCHL3, despite having no effect on its catalytic activity. Collectively, these data suggest that UCHL3 facilitates cellular viability after DSB induction by antagonizing Ku80 ubiquitylation to enhance Ku80 retention at sites of damage.


Subject(s)
Cysteine Endopeptidases/genetics , DNA Damage/genetics , Ku Autoantigen/genetics , Ubiquitination/genetics , Antigens, Nuclear/genetics , Cell Line , Cell Survival/genetics , Chromatin/genetics , DNA/genetics , DNA Breaks, Double-Stranded , DNA End-Joining Repair/genetics , DNA Repair/genetics , DNA-Binding Proteins/genetics , Humans , Phosphorylation/genetics , Protein Binding/genetics , Ubiquitin Thiolesterase
SELECTION OF CITATIONS
SEARCH DETAIL
...