Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(2)2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33478053

ABSTRACT

In this research, we focused on Human-Robot collaboration. There were two goals: (1) to develop and evaluate a real-time Human-Robot collaborative system, and (2) to achieve concrete tasks such as collaborative peg-in-hole using the developed system. We proposed an algorithm for visual sensing and robot hand control to perform collaborative motion, and we analyzed the stability of the collaborative system and a so-called collaborative error caused by image processing and latency. We achieved collaborative motion using this developed system and evaluated the collaborative error on the basis of the analysis results. Moreover, we aimed to realize a collaborative peg-in-hole task that required a system with high speed and high accuracy. To achieve this goal, we analyzed the conditions required for performing the collaborative peg-in-hole task from the viewpoints of geometric, force and posture conditions. Finally, in this work, we show the experimental results and data of the collaborative peg-in-hole task, and we examine the effectiveness of our collaborative system.


Subject(s)
Feedback, Sensory , Robotics , Algorithms , Hand , Humans , Motion , Task Performance and Analysis
2.
Micromachines (Basel) ; 9(7)2018 Jun 27.
Article in English | MEDLINE | ID: mdl-30424258

ABSTRACT

In this paper, we develop a new sensor network system with a high sampling rate (over 500 Hz) based on the simultaneous synchronization of clock and data acquisition for integrating the data obtained from various sensors. Hence, we also propose a method for the synchronization of clock and data acquisition in the sensor network system. In the proposed scheme, multiple sensor nodes including PCs are connected via Ethernet for data communication and for clock synchronization. The timing of the data acquisition of each sensor is locally controlled based on the PC's clock locally provided in the node, and the clocks are globally synchronized over the network. We construct three types of high-speed sensor network systems using the proposed method: the first one is composed of a high-speed tactile sensor node and a high-speed vision node; the second one is composed of a high-speed tactile sensor node and three acceleration sensor nodes; and the last one is composed of a high-speed tactile sensor node, two acceleration sensor nodes, and a gyro sensor node. Through experiments, we verify that the timing error between the sensor nodes for data acquisition is less than 15 µs, which is significantly smaller than the time interval of 2 ms or a shorter sampling time (less than 2 ms). We also confirm the effectiveness of the proposed method and it is expected that the system can be applied to various applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...