Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Nutr ESPEN ; 61: 119-130, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777423

ABSTRACT

BACKGROUND & AIMS: Serum retinol (ROH) is commonly used for population level assessment of vitamin A status. High-performance liquid chromatography (HPLC) is considered most accurate method for measuring ROH. However, with the technical difficulty of using HPLC for routine assays, serum retinol-binding protein (RBP) measured by immunological assays is expected to be a surrogate marker for ROH, with reports of a close correlation between serum RBP and ROH. Nevertheless, RBP is not commonly tested to assess vitamin A status with concerns over RBP alterations under various physiopathological conditions. Thus, we reappraised the extent to which RBP could be used as a surrogate marker in representative disorders that alter serum RBP levels. As a related marker, diagnostic utility of transthyretin (TTR) was also evaluated. METHODS: To evaluate the reliability of ROH and RBP assays, specimen stability was assessed in terms of (1) storage at 25, 4, -20, and -80 °C for 1-28 days, (2) five-cycle freeze-thawing, and (3) fluorescent light exposure for 1-14 days. Sources of variation (sex, age, body mass index [BMI], and drinking habits) and reference intervals for ROH, RBP, and TTR were determined in 617 well-defined healthy individuals. To investigate the influence of disorders that affect serum RBP, patients with five diagnostic groups were enrolled: 26 with chronic kidney disease (CKD); 13 with various malignancies in advanced stages (AdM), 12 with acute bacterial infections (ABI), 6 with liver cirrhosis (LC), and 26 with simple obesity (BMI ≥ 27 kg/m2). RESULTS: The stability of RBP and ROH in serum was confirmed under all conditions. In healthy individuals, serum ROH, RBP, and TTR were appreciably high in males with a slight increase in proportion to age and BMI. The major-axis regression line between RBP (x) and ROH (y) in healthy individuals was y = x, with a correlation coefficient of 0.986. In the LC, AdM, and ABI groups, similar strong correlations were observed; however, the regression lines were shifted slightly rightward from the healthy group line, indicating a positive bias in estimating ROH. Interestingly, the same analyses between TTR and ROH revealed similar strong linear relationships in all groups; however, the regression line of each group showed a leftward (opposite) shift from the healthy group line. Based on these observations, we developed a novel regression model composed of RBP and TTR, which gave much improved accuracy in estimating ROH, even under these pathological conditions. CONCLUSIONS: The perfect RBP-ROH correlation in healthy individuals indicates the utility of RPB as a surrogate marker for ROH. Nevertheless, under RBP-altered conditions, a slight overestimation of ROH is inevitable. However, when the TTR was tested together, the bias can be corrected almost perfectly using the novel ROH estimation formula comprising RBP and TTR.


Subject(s)
Biomarkers , Prealbumin , Retinol-Binding Proteins , Vitamin A , Humans , Biomarkers/blood , Male , Vitamin A/blood , Female , Middle Aged , Adult , Retinol-Binding Proteins/analysis , Retinol-Binding Proteins/metabolism , Prealbumin/analysis , Prealbumin/metabolism , Aged , Reproducibility of Results , Chromatography, High Pressure Liquid , Body Mass Index , Young Adult , Nutritional Status
2.
FEBS Open Bio ; 3: 243-51, 2013.
Article in English | MEDLINE | ID: mdl-23772401

ABSTRACT

Lysophosphatidylcholine (LPC) is one of the major lysophospholipids mainly generated by phospholipase A2 (PLA2)-mediated hydrolysis of phosphatidylcholine (PC). We previously found that LPC displays neurotrophin-like activity in the rat pheochromocytoma PC12 cells and in cerebellar granule neurons, but the molecular mechanism remains unclear. We report here that LPC specifically enhances nerve growth factor (NGF)-induced signals in PC12 cells. When PC12 cells were treated with NGF, MAPK was phosphorylated, but this phosphorylation was significantly elevated when LPC was added together. In accordance, NGF-induced expression of immediate early genes, c-fos and NGF-IA, was upregulated by LPC. Phosphorylation of the upstream components, MEK and NGF receptor TrkA, was also promoted by LPC, which was in line with increased phosphorylation of Akt. In contrast, LPC did not enhance epidermal growth factor (EGF)-, basic fibroblast growth factor-, or insulin-like growth factor-1-induced signals. Studies using TrkA/EGF receptor chimeras demonstrated that the extracellular domain, but not the transmembrane or intracellular domains, of TrkA is responsible for the effect of LPC. Exogenously-added secretory PLA2 (sPLA2) enhanced NGF-induced MAPK phosphorylation at a comparable level to LPC, suggesting that LPC generated in situ by sPLA2-mediated hydrolysis of membrane PC stimulated NGF-TrkA signal. Taken together, these results indicate a specific role and function of LPC on NGF-TrkA signaling pathway.

SELECTION OF CITATIONS
SEARCH DETAIL
...