Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 2622, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38521784

ABSTRACT

Knitting turns yarn, a 1D material, into a 2D fabric that is flexible, durable, and can be patterned to adopt a wide range of 3D geometries. Like other mechanical metamaterials, the elasticity of knitted fabrics is an emergent property of the local stitch topology and pattern that cannot solely be attributed to the yarn itself. Thus, knitting can be viewed as an additive manufacturing technique that allows for stitch-by-stitch programming of elastic properties and has applications in many fields ranging from soft robotics and wearable electronics to engineered tissue and architected materials. However, predicting these mechanical properties based on the stitch type remains elusive. Here we untangle the relationship between changes in stitch topology and emergent elasticity in several types of knitted fabrics. We combine experiment and simulation to construct a constitutive model for the nonlinear bulk response of these fabrics. This model serves as a basis for composite fabrics with bespoke mechanical properties, which crucially do not depend on the constituent yarn.

2.
Soft Matter ; 15(6): 1210-1214, 2019 Feb 06.
Article in English | MEDLINE | ID: mdl-30676600

ABSTRACT

Many liquid crystalline systems display spontaneous breaking of achiral symmetry, as achiral molecules aggregate into large chiral domains. In confined cylinders with homeotropic boundary conditions, chromonic liquid crystals - which have a twist elastic modulus which is at least an order of magnitude less than their splay and bend counter parts - adopt a twisted escaped radial texture (TER) to minimize their free energy, whilst 5CB - which has all three elastic constants roughly comparable - does not. In a recent series of experiments, we have shown that 5CB confined to tori and bent cylindrical capillaries with homeotropic boundary conditions also adopts a TER structure resulting from the curved nature of the confining boundaries [P. W. Ellis et al., Phys. Rev. Lett., 2018, 247803]. We shall call this microscopic twist, as the twisted director organization not only depends on the confinement geometry but also on the values of elastic moduli. Additionally, we demonstrate theoretically that the curved geometry of the boundary induces a twist in the escaped radial (ER) texture. Moving the escaped core of the structure towards the center of the torus not only lowers the splay and bend energies, but lowers the energetic cost of this distinct source for twist that we shall call geometric twist. As the torus becomes more curved, the ideal location for the escaped core approaches the inner radius of the torus.

3.
Soft Matter ; 14(43): 8771-8779, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30335118

ABSTRACT

Recent progress in additive manufacturing and materials engineering has led to a surge of interest in shape-changing plate and shell-like structures. Such structures are typically printed in a planar configuration and, when exposed to an ambient stimulus such as heat or humidity, swell into a desired three-dimensional geometry. Viewed through the lens of differential geometry and elasticity, the application of the physical stimulus can be understood as a local change in the metric of a two dimensional surface embedded in three dimensions. To relieve the resulting elastic frustration, the structure will generally bend and buckle out-of-plane. Here, we propose a numerical approach to convert the discrete geometry of filament bilayers, associated with print paths of inks with given material properties, into continuous plates with inhomogeneous growth patterns and thicknesses. When subject to prescribed growth anisotropies, we can then follow the evolution of the shapes into their final form. We show that our results provide a good correspondence between experiments and simulations, and lead to a framework for the prediction and design of shape-changing structures.

4.
Phys Rev Lett ; 120(6): 068101, 2018 Feb 09.
Article in English | MEDLINE | ID: mdl-29481240

ABSTRACT

Reconstructive surgeries often use topological manipulation of tissue to minimize postoperative scarring. The most common version of this, Z-plasty, involves modifying a straight line cut into a Z shape, followed by a rotational transposition of the resulting triangular pedicle flaps, and a final restitching of the wound. This locally reorients the anisotropic stress field and reduces the potential for scarring. We analyze the planar geometry and mechanics of the Z-plasty to quantify the rotation of the overall stress field and the local forces on the restitched cut using theory, simulations, and simple physical Z-plasty experiments with foam sheets that corroborate each other. Our study rationalizes the most typical surgical choice of this angle, and opens the way for a range of surgical decisions by characterizing the stresses along the cut.

5.
Phys Rev Lett ; 121(24): 247803, 2018 Dec 14.
Article in English | MEDLINE | ID: mdl-30608771

ABSTRACT

We confine a nematic liquid crystal with homeotropic anchoring to stable toroidal droplets and study how geometry affects the equilibrium director configuration. In contrast to the case of cylindrical confinement, we find that the equilibrium state is chiral-a twisted and escaped radial director configuration. Furthermore, we find that the magnitude of the twist distortion increases as the ratio of the ring radius to the tube radius decreases; we confirm this with computer simulations of optically polarized microscopy textures. In addition, numerical calculations also indicate that the local geometry indeed affects the magnitude of the twist distortion. We further confirm this curvature-induced twisting using bent cylindrical capillaries.

6.
Interface Focus ; 7(4): 20160118, 2017 Aug 06.
Article in English | MEDLINE | ID: mdl-28630669

ABSTRACT

Frustration is a powerful mechanism in condensed matter systems, driving both order and complexity. In smectics, the frustration between macroscopic chirality and equally spaced layers generates textures characterized by a proliferation of defects. In this article, we study several different ground states of the chiral Landau-de Gennes free energy for a smectic liquid crystal. The standard theory finds the twist grain boundary (TGB) phase to be the ground state for chiral type II smectics. However, for very highly chiral systems, the hierarchical helical nanofilament phase can form and is stable over the TGB.

7.
Nat Mater ; 15(4): 413-8, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26808461

ABSTRACT

Shape-morphing systems can be found in many areas, including smart textiles, autonomous robotics, biomedical devices, drug delivery and tissue engineering. The natural analogues of such systems are exemplified by nastic plant motions, where a variety of organs such as tendrils, bracts, leaves and flowers respond to environmental stimuli (such as humidity, light or touch) by varying internal turgor, which leads to dynamic conformations governed by the tissue composition and microstructural anisotropy of cell walls. Inspired by these botanical systems, we printed composite hydrogel architectures that are encoded with localized, anisotropic swelling behaviour controlled by the alignment of cellulose fibrils along prescribed four-dimensional printing pathways. When combined with a minimal theoretical framework that allows us to solve the inverse problem of designing the alignment patterns for prescribed target shapes, we can programmably fabricate plant-inspired architectures that change shape on immersion in water, yielding complex three-dimensional morphologies.


Subject(s)
Biomimetic Materials , Cell Wall/chemistry , Cellulose/chemistry , Models, Theoretical , Plants/chemistry , Anisotropy
8.
Proc Natl Acad Sci U S A ; 112(41): 12639-44, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26420873

ABSTRACT

Recently, there has been renewed interest in the coupling between geometry and topological defects in crystalline and striped systems. Standard lore dictates that positive disclinations are associated with positive Gaussian curvature, whereas negative disclinations give rise to negative curvature. Here, we present a diblock copolymer system exhibiting a striped columnar phase that preferentially forms wrinkles perpendicular to the underlying stripes. In free-standing films this wrinkling behavior induces negative Gaussian curvature to form in the vicinity of positive disclinations.

9.
Interface Focus ; 2(5): 617-22, 2012 Oct 06.
Article in English | MEDLINE | ID: mdl-24098846

ABSTRACT

Riemann's minimal surfaces, a one-parameter family of minimal surfaces, describe a bicontinuous lamellar system with pores connecting alternating layers. We demonstrate explicitly that Riemann's minimal surfaces are composed of a nonlinear sum of two oppositely handed helicoids.

10.
Phys Rev Lett ; 104(25): 257802, 2010 Jun 25.
Article in English | MEDLINE | ID: mdl-20867415

ABSTRACT

Focal conic domains are typically the "smoking gun" by which smectic liquid crystalline phases are identified. The geometry of the equally spaced smectic layers is highly generic but, at the same time, difficult to work with. In this Letter we develop an approach to the study of focal sets in smectics which exploits a hidden Poincaré symmetry revealed only by viewing the smectic layers as projections from one-higher dimension. We use this perspective to shed light upon several classic focal conic textures, including the concentric cyclides of Dupin, polygonal textures, and tilt-grain boundaries.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(2 Pt 1): 021604, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19792136

ABSTRACT

Recent experiments have exploited elastic instabilities in membranes to create complex patterns. However, the rational design of such structures poses many challenges, as they are products of nonlinear elastic behavior. We pose a simple model for determining the orientational order of such patterns using only linear elasticity theory which correctly predicts the outcomes of several experiments. Each element of the pattern is modeled by a "dislocation dipole" located at a point on a lattice, which then interacts elastically with all other dipoles in the system. We explicitly consider a membrane with a square lattice of circular holes under uniform compression and examine the changes in morphology as it is allowed to relax in a specified direction.

12.
Phys Rev Lett ; 103(25): 257804, 2009 Dec 18.
Article in English | MEDLINE | ID: mdl-20366290

ABSTRACT

Liquid crystalline systems exhibiting both macroscopic chirality and smectic order experience frustration resulting in mesophases possessing complex three-dimensional order. In the twist-grain-boundary phase, defect lattices mediate the propagation of twist throughout the system. We propose a new chiral smectic structure composed of a lattice of chiral bundles as a model of the helical nanofilament (B4) phase of bent-core smectics.

13.
Nano Lett ; 8(4): 1192-6, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18333622

ABSTRACT

We report on a simple yet robust method to produce orientationally modulated two-dimensional patterns with sub-100 nm features over cm2 regions via a solvent-induced swelling instability of an elastomeric film with micrometer-scale perforations. The dramatic reduction of feature size ( approximately 10 times) is achieved in a single step, and the process is reversible and repeatable without the requirement of delicate surface preparation or chemistry. By suspending ferrous and other functional nanoparticles in the solvent, we have faithfully printed the emergent patterns onto flat and curved substrates. We model this elastic instability in terms of elastically interacting "dislocation dipoles" and find complete agreement between the theoretical ground-state and the observed pattern. Our understanding allows us to manipulate the structural details of the membrane to tailor the elastic distortions and generate a variety of nanostructures.

SELECTION OF CITATIONS
SEARCH DETAIL
...