Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Front Oncol ; 10: 572895, 2020.
Article in English | MEDLINE | ID: mdl-33117705

ABSTRACT

Lung cancer is the leading cause of cancer-related mortality worldwide. Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) therapies, based on the evaluation of EGFR mutations, have shown dramatic clinical benefits. EGFR mutation assays are mainly performed on tumor biopsies, which carry risks, are not always successful and give results relevant to the timepoint of the assay. To detect secondary EGFR mutations, which cause resistance to 1st and 2nd generation TKIs and lead to the administration of a 3rd generation drug, effective and non-invasive monitoring of EGFR mutation status is needed. Liquid biopsy analytes, such as circulating tumor cells (CTCs) and circulating tumor DNA (cfDNA), allow such monitoring over the course of the therapy. The aim of this study was to develop and optimize a workflow for the evaluation of cfDNA and CTCs in NSCLC patients all from one blood sample. Using Vortex technology and EntroGen ctEGFR assay, EGFR mutations were identified at 0.5 ng of DNA (∼83 cells), with a sensitivity ranging from 0.1 to 2.0% for a total DNA varying from 25 ng (∼4 CTCs among 4000 white blood cells, WBCs) to 1 ng (∼4 CTCs among 200 WBCs). The processing of plasma-depleted-blood provided comparable capture recovery as whole blood, confirming the possibility of a multimodality liquid biopsy analysis (cfDNA and CTC DNA) from a single tube of blood. Different anticoagulants were evaluated and compared in terms of respective performance. Blood samples from 24 NSCLC patients and 6 age-matched healthy donors were analyzed with this combined workflow to minimize blood volume needed and sample-to-sample bias, and the EGFR mutation profile detected from CTCs and cfDNA was compared to matched tumor tissues. Despite the limited size of the patient cohort, results from this non-invasive EGFR mutation analysis are encouraging and this combined workflow represents a valuable means for informing therapy selection and for monitoring treatment of patients with NSCLC.

2.
Sci Rep ; 8(1): 2592, 2018 02 07.
Article in English | MEDLINE | ID: mdl-29416054

ABSTRACT

Metastatic non-small cell lung cancer (NSCLC) is a highly fatal and immunogenic malignancy. Although the immune system is known to recognize these tumor cells, one mechanism by which NSCLC can evade the immune system is via overexpression of programmed cell death ligand 1 (PD-L1). Recent clinical trials of PD-1 and PD-L1 inhibitors have returned promising clinical responses. Important for personalizing therapy, patients with higher intensity staining for PD-L1 on tumor biopsies responded better. Thus, there has been interest in using PD-L1 tumor expression as a criterion for patient selection. Currently available methods of screening involve invasive tumor biopsy, followed by histological grading of PD-L1 levels. Biopsies have a high risk of complications, and only allow sampling from limited tumor sections, which may not reflect overall tumor heterogeneity. Circulating tumor cell (CTC) PD-L1 levels could aid in screening patients, and could supplement tissue PD-L1 biopsy results by testing PD-L1 expression from disseminated tumor sites. Towards establishing CTCs as a screening tool, we developed a protocol to isolate CTCs at high purity and immunostain for PD-L1. Monitoring of PD-L1 expression on CTCs could be an additional biomarker for precision medicine that may help in determining response to immunotherapies.


Subject(s)
B7-H1 Antigen/metabolism , Biomarkers, Tumor/metabolism , Carcinoma, Non-Small-Cell Lung/secondary , Lung Neoplasms/pathology , Neoplastic Cells, Circulating/metabolism , A549 Cells , Adult , Aged , Aged, 80 and over , Biopsy/methods , Carcinoma, Non-Small-Cell Lung/therapy , Female , HeLa Cells , Humans , Immunotherapy , Lung Neoplasms/therapy , Male , Middle Aged , Neoplastic Cells, Circulating/drug effects
3.
NPJ Precis Oncol ; 1(1): 15, 2017.
Article in English | MEDLINE | ID: mdl-29872702

ABSTRACT

There has been increased interest in utilizing non-invasive "liquid biopsies" to identify biomarkers for cancer prognosis and monitoring, and to isolate genetic material that can predict response to targeted therapies. Circulating tumor cells (CTCs) have emerged as such a biomarker providing both genetic and phenotypic information about tumor evolution, potentially from both primary and metastatic sites. Currently, available CTC isolation approaches, including immunoaffinity and size-based filtration, have focused on high capture efficiency but with lower purity and often long and manual sample preparation, which limits the use of captured CTCs for downstream analyses. Here, we describe the use of the microfluidic Vortex Chip for size-based isolation of CTCs from 22 patients with advanced prostate cancer and, from an enumeration study on 18 of these patients, find that we can capture CTCs with high purity (from 1.74 to 37.59%) and efficiency (from 1.88 to 93.75 CTCs/7.5 mL) in less than 1 h. Interestingly, more atypical large circulating cells were identified in five age-matched healthy donors (46-77 years old; 1.25-2.50 CTCs/7.5 mL) than in five healthy donors <30 years old (21-27 years old; 0.00 CTC/7.5 mL). Using a threshold calculated from the five age-matched healthy donors (3.37 CTCs/mL), we identified CTCs in 80% of the prostate cancer patients. We also found that a fraction of the cells collected (11.5%) did not express epithelial prostate markers (cytokeratin and/or prostate-specific antigen) and that some instead expressed markers of epithelial-mesenchymal transition, i.e., vimentin and N-cadherin. We also show that the purity and DNA yield of isolated cells is amenable to targeted amplification and next-generation sequencing, without whole genome amplification, identifying unique mutations in 10 of 15 samples and 0 of 4 healthy samples.

4.
Sci Rep ; 6: 35474, 2016 10 14.
Article in English | MEDLINE | ID: mdl-27739521

ABSTRACT

Circulating tumor cells (CTCs) have a great potential as indicators of metastatic disease that may help physicians improve cancer prognostication, treatment and patient outcomes. Heterogeneous marker expression as well as the complexity of current antibody-based isolation and analysis systems highlights the need for alternative methods. In this work, we use a microfluidic Vortex device that can selectively isolate potential tumor cells from blood independent of cell surface expression. This system was adapted to interface with three protein-marker-free analysis techniques: (i) an in-flow automated image processing system to enumerate cells released, (ii) cytological analysis using Papanicolaou (Pap) staining and (iii) fluorescence in situ hybridization (FISH) targeting the ALK rearrangement. In-flow counting enables a rapid assessment of the cancer-associated large circulating cells in a sample within minutes to determine whether standard downstream assays such as cytological and cytogenetic analyses that are more time consuming and costly are warranted. Using our platform integrated with these workflows, we analyzed 32 non-small cell lung cancer (NSCLC) and 22 breast cancer patient samples, yielding 60 to 100% of the cancer patients with a cell count over the healthy threshold, depending on the detection method used: respectively 77.8% for automated, 60-100% for cytology, and 80% for immunostaining based enumeration.


Subject(s)
Breast Neoplasms/blood , Carcinoma, Non-Small-Cell Lung/blood , Cell Separation/methods , Lung Neoplasms/blood , Microfluidics/methods , Neoplastic Cells, Circulating/metabolism , Anaplastic Lymphoma Kinase , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Case-Control Studies , Cell Separation/instrumentation , Female , Humans , In Situ Hybridization, Fluorescence/methods , MCF-7 Cells , Male , Microfluidics/instrumentation , Neoplastic Cells, Circulating/pathology , Papanicolaou Test/methods , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism
5.
Oncotarget ; 7(11): 12748-60, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26863573

ABSTRACT

Circulating tumor cells (CTCs) are emerging as rare but clinically significant non-invasive cellular biomarkers for cancer patient prognosis, treatment selection, and treatment monitoring. Current CTC isolation approaches, such as immunoaffinity, filtration, or size-based techniques, are often limited by throughput, purity, large output volumes, or inability to obtain viable cells for downstream analysis. For all technologies, traditional immunofluorescent staining alone has been employed to distinguish and confirm the presence of isolated CTCs among contaminating blood cells, although cells isolated by size may express vastly different phenotypes. Consequently, CTC definitions have been non-trivial, researcher-dependent, and evolving. Here we describe a complete set of objective criteria, leveraging well-established cytomorphological features of malignancy, by which we identify large CTCs. We apply the criteria to CTCs enriched from stage IV lung and breast cancer patient blood samples using the High Throughput Vortex Chip (Vortex HT), an improved microfluidic technology for the label-free, size-based enrichment and concentration of rare cells. We achieve improved capture efficiency (up to 83%), high speed of processing (8 mL/min of 10x diluted blood, or 800 µL/min of whole blood), and high purity (avg. background of 28.8±23.6 white blood cells per mL of whole blood). We show markedly improved performance of CTC capture (84% positive test rate) in comparison to previous Vortex designs and the current FDA-approved gold standard CellSearch assay. The results demonstrate the ability to quickly collect viable and pure populations of abnormal large circulating cells unbiased by molecular characteristics, which helps uncover further heterogeneity in these cells.


Subject(s)
High-Throughput Screening Assays/methods , Microfluidic Analytical Techniques/methods , Neoplastic Cells, Circulating/classification , Adult , Aged , Aged, 80 and over , Breast Neoplasms/blood , Breast Neoplasms/pathology , Female , Humans , Lung Neoplasms/blood , Lung Neoplasms/pathology , Male , Middle Aged , Neoplastic Cells, Circulating/pathology
6.
Biomicrofluidics ; 9(6): 064116, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26697126

ABSTRACT

Circulating tumor cells (CTCs) are important biomarkers for monitoring tumor dynamics and efficacy of cancer therapy. Several technologies have been demonstrated to isolate CTCs with high efficiency but achieve a low purity from a large background of blood cells. We have previously shown the ability to enrich CTCs with high purity from large volumes of blood through selective capture in microvortices using the Vortex Chip. The device consists of a narrow channel followed by a series of expansion regions called reservoirs. Fast flow in the narrow entry channel gives rise to inertial forces, which direct larger cells into trapping vortices in the reservoirs where they remain circulating in orbits. By studying the entry and stability of particles following entry into reservoirs, we discover that channel cross sectional area plays an important role in controlling the size of trapped particles, not just the orbital trajectories. Using these design modifications, we demonstrate a new device that is able to capture a wider size range of CTCs from clinical samples, uncovering further heterogeneity. This simple biophysical method opens doors for a range of downstream interventions, including genetic analysis, cell culture, and ultimately personalized cancer therapy.

7.
J Mech Behav Biomed Mater ; 4(1): 9-15, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21094476

ABSTRACT

Vascular remodeling is essential to proper vessel function. Dramatic changes in mechanical environment, however, may initiate pathophysiological vascular remodeling processes that lead to vascular disease. Previous work by some of our group has demonstrated a dramatic rise in matrix metalloproteinase (MMP) expression shortly following an abrupt increase in carotid blood flow. We hypothesized that there would be a corresponding change in carotid mechanical properties. Unilateral carotid ligation surgery was performed to produce an abrupt, sustained increase in blood flow through the contralateral carotid artery of rats. The flow-augmented artery was harvested after sham surgery or 1, 2, or 6 days after flow augmentation. Vessel mechanical response in the circumferential direction was then evaluated through a series of pressure-diameter tests. Results show that the extent of circumferential stretch (normalized change in diameter) at in vivo pressure levels was significantly different (p<0.05) from normo-flow controls at 1 and 2 days following flow augmentation. Measurements at 1, 2, and 6 days were not significantly different from one another, but a trend in the data suggested that circumferential stretch was largest 1 day following surgery and subsequently decreased toward baseline values. Because previous work with this model indicated a similar temporal pattern for MMP-9 expression, an exploratory set of experiments was conducted where vessels were tested 1 day following surgery in animals treated with broad spectrum MMP inhibitors (either doxycycline or GM6001). Results showed a trend for the inhibitors to minimize changes in mechanical properties. Observations demonstrate that vessel mechanical properties change rapidly following flow augmentation and that alterations may be linked to expression of MMPs.


Subject(s)
Carotid Arteries/physiopathology , Animals , Biomechanical Phenomena , Blood Flow Velocity/physiology , Carotid Arteries/pathology , Hemodynamics , Homeostasis , In Vitro Techniques , Ligation , Male , Matrix Metalloproteinase 9/metabolism , Rats , Rats, Sprague-Dawley , Stress, Mechanical
8.
ACS Med Chem Lett ; 1(3): 130-4, 2010 Jun 10.
Article in English | MEDLINE | ID: mdl-24900187

ABSTRACT

The blockade of aberrant hedgehog (Hh) signaling has shown promise for therapeutic intervention in cancer. A cell-based phenotypic high-throughput screen was performed, and the lead structure (1) was identified as an inhibitor of the Hh pathway via antagonism of the Smoothened receptor (Smo). Structure-activity relationship studies led to the discovery of a potent and specific Smoothened antagonist N-(6-((2S,6R)-2,6-dimethylmorpholino)pyridin-3-yl)-2-methyl-4'-(trifluoromethoxy)biphenyl-3-carboxamide (5m, NVP-LDE225), which is currently in clinical development.

9.
J Med Chem ; 52(13): 3954-68, 2009 Jul 09.
Article in English | MEDLINE | ID: mdl-19469545

ABSTRACT

Abnormal activation of the Hedgehog (Hh) signaling pathway has been linked to several types of human cancers, and the development of small-molecule inhibitors of this pathway represents a promising route toward novel anticancer therapeutics. A cell-based screen performed in our laboratories identified a new class of Hh pathway inhibitors, 1-amino-4-benzylphthalazines, that act via antagonism of the Smoothened receptor. A variety of analogues were synthesized and their structure-activity relationships determined. This optimization resulted in the discovery of high affinity Smoothened antagonists, one of which was further profiled in vivo. This compound displayed a good pharmacokinetic profile and also afforded tumor regression in a genetic mouse model of medulloblastoma.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Phthalazines/pharmacokinetics , Receptors, G-Protein-Coupled/antagonists & inhibitors , Administration, Oral , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Hedgehog Proteins/metabolism , Humans , Medulloblastoma/drug therapy , Mice , Neoplasms, Experimental/drug therapy , Phthalazines/chemistry , Phthalazines/therapeutic use , Signal Transduction/drug effects , Smoothened Receptor , Structure-Activity Relationship
10.
J Cereb Blood Flow Metab ; 29(3): 495-503, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19002198

ABSTRACT

Sustained hemodynamic stresses, especially sustained high blood flow, result in flow-induced outward vascular remodeling. Mechanisms that link hemodynamic stresses to vascular remodeling are not well understood. Inflammatory cells, known for their release of proteinases, including matrix metalloproteinases (MMPs), are emerging as key mediators for various tissue remodeling. Using a flow-augmented common carotid artery model in rats, we tested whether macrophages play critical roles in adaptive outward vascular remodeling in response to an increase in blood flow. Left common carotid artery ligation caused a sustained increase in blood flow with a gradual increase in luminal diameter in the right common carotid artery. Macrophages infiltrated into the vascular wall that peaked 3 days after flow augmentation. The time course of MMP-9 expression coincided with infiltration of macrophages. Macrophage depletion by liposome-encapsulated dichloromethylene diphosphonate significantly reduced flow-induced outward vascular remodeling, as indicated by the smaller luminal diameter of flow-augmented right common carotid artery in the clodronate-treated group compared with the phosphate-buffered saline-treated group (P<0.05). These data show critical roles of macrophages in flow-induced outward vascular remodeling. Inflammatory cell infiltration and their subsequent release of cytokines may be key processes for flow-induced outward vascular remodeling.


Subject(s)
Carotid Artery, Common/pathology , Carotid Stenosis/pathology , Macrophages/pathology , Animals , Carotid Artery, Common/enzymology , Carotid Stenosis/enzymology , Carotid Stenosis/physiopathology , Disease Models, Animal , Endothelium, Vascular/enzymology , Endothelium, Vascular/pathology , Gelatinases/metabolism , Macrophages/enzymology , Male , Rats , Rats, Sprague-Dawley , Regional Blood Flow/physiology
11.
BMC Neurol ; 5(1): 1, 2005 Jan 24.
Article in English | MEDLINE | ID: mdl-15667660

ABSTRACT

BACKGROUND: The primary aim of this study is to demonstrate the feasibility of utilizing doxycycline to suppress matrix metalloproteinase-9 (MMP-9) in brain arteriovenous malformations (AVMs). METHODS: Ex-vivo treatment of AVM tissues: Intact AVM tissues were treated with doxycycline for 48 hours. Active and total MMP-9 in the medium were measured. Pilot trial: AVM patients received either doxycycline (100 mg) or placebo twice a day for one week prior to AVM resection. Active and total MMP-9 in BVM tissues were measured. RESULTS: Ex-vivo treatment of AVM tissues: Doxycycline at 10 and 100 microg/ml significantly decreased MMP-9 levels in AVM tissues ex-vivo (total: control vs 10 vs 100 microg/ml = 100 +/- 6 vs 60 +/- 16 vs 61 +/- 9%; active: 100 +/- 8 vs 48 +/- 16 vs 59 +/- 10%). Pilot trial: 10 patients received doxycycline, and 4 patients received placebo. There was a trend for both MMP-9 levels to be lower in the doxycycline group than in the placebo group (total: 2.18 +/- 1.94 vs 3.26 +/- 3.58, P = .50; active: 0.48 +/- 0.48 vs 0.95 +/- 1.01 ng/100 microg protein, P = .25). CONCLUSIONS: A clinically relevant concentration of doxycycline decreased MMP-9 in ex-vivo AVM tissues. Furthermore, there was a trend that oral doxycycline for as short as one week resulted in a decrease in MMP-9 in AVM tissues. Further studies are warranted to justify a clinical trial to test effects of doxycycline on MMP-9 expression in AVM tissues.


Subject(s)
Doxycycline/pharmacology , Intracranial Arteriovenous Malformations/drug therapy , Intracranial Arteriovenous Malformations/enzymology , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase Inhibitors , Adult , Cells, Cultured , Feasibility Studies , Humans , Intracranial Arteriovenous Malformations/surgery , Middle Aged , Pilot Projects
12.
J Cell Physiol ; 203(1): 166-76, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15389626

ABSTRACT

Endothelial cell (EC) migration is critical in wound healing and angiogenesis. Fluid shear stress due to blood flow plays an important role in EC migration. However, the role of EC surface heparan sulfate proteoglycans (HSPGs) in EC adhesion, migration, and mechanotransduction is not well understood. Here, we investigated the effects of HSPG disruption on the adhesion, migration, and mechanotransduction of ECs cultured on fibronectin. We showed that disruption of HSPGs with heparinase decreased EC adhesion rate by 40% and adhesion strength by 33%. At the molecular level, HSPG disruption decreased stress fibers and the size of focal adhesions (FAs), increased filopodia formation, and enhanced EC migration. Under flow condition, heparinase treatment increased EC migration speed, but inhibited shear stress-induced directionality of EC migration and the recruitment of phosphorylated focal adhesion kinase in the flow direction, suggesting that HSPGs are important for sensing the direction of shear stress. In addition, decreasing cell adhesion by lowering fibronectin density enhanced EC migration under static and flow condition, but did not affect the directional migration of ECs under flow. Based on our results, we propose that HSPGs play dual roles as mechanotransducer on the EC surface: (1) HSPGs-matrix interaction on the abluminal surface regulates EC migration speed through an adhesion-dependent manner, and (2) HSPGs without binding to matrix (e.g., on the luminal surface) are involved in sensing the direction of flow through an adhesion-independent manner.


Subject(s)
Cell Movement/physiology , Endothelium, Vascular/cytology , Endothelium, Vascular/physiology , Heparan Sulfate Proteoglycans/physiology , Mechanotransduction, Cellular/physiology , Animals , Aorta/cytology , Cattle , Cell Adhesion/drug effects , Cell Adhesion/physiology , Cell Movement/drug effects , Cells, Cultured , Focal Adhesion Protein-Tyrosine Kinases , Membrane Proteins/physiology , Perfusion , Phosphorylation , Polysaccharide-Lyases/pharmacology , Protein-Tyrosine Kinases/metabolism , Stress Fibers/metabolism , Stress, Mechanical
13.
Endothelium ; 11(3-4): 207-10, 2004.
Article in English | MEDLINE | ID: mdl-15370298

ABSTRACT

To study a potential feedback system in the angiopoietin (Ang)-Tie2 system, the authors examined effects of Ang1 and Ang2 on Tie2 expression on human umbilical vein endothelial cells (HUVECs) with or without stimulation by a potent inflammatory cytokine, tumor necrosis factor-alpha (TNF-alpha). Ang1, but not Ang2, down-regulated Tie2 expression on HUVECs without TNF-alpha stimulation. Both Ang1 and Ang2 attenuated TNF-alpha-induced Tie2 up-regulation. Regulation of Tie2 expression by Ang1 or Ang2 was not dependent on phosphatidylinositol 3-kinase. The Ang-Tie2 system appears to have an autoregulatory feedback system that may be regulating the overall activity of the Tie2 system in both physiological and pathological conditions.


Subject(s)
Angiopoietin-1/metabolism , Angiopoietin-2/metabolism , Endothelial Cells/metabolism , Feedback, Physiological/physiology , Receptor, TIE-2/metabolism , Angiopoietin-1/pharmacology , Angiopoietin-2/pharmacology , Cell Line , Down-Regulation/drug effects , Down-Regulation/physiology , Endothelial Cells/drug effects , Feedback, Physiological/drug effects , Homeostasis/drug effects , Homeostasis/physiology , Humans , Phosphatidylinositol 3-Kinases/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Receptor, TIE-2/drug effects , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation/drug effects , Up-Regulation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...