Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Sci ; 36(5): 631-635, 2020 May 10.
Article in English | MEDLINE | ID: mdl-32092734

ABSTRACT

Environmental contaminations of 129I were continuously monitored in various sample preparation rooms for accelerator mass spectrometry at the University of Tsukuba. Monitoring of 129I was performed in the rooms used for the treatment of samples in the past, in order to compare with the results obtained in the sample preparation rooms. Ambient levels of atmospheric 129I in each room were estimated from the measured concentrations in the alkali trap solutions. This article reports the results of one year of monitoring the temporal changes of stable iodine (127I) and 129I contamination rates in the alkali trap solutions. It was found that 129I contamination rates were lower than approximately 104 atoms cm-2 day-1 in the rooms where ether no samples or only samples with environmental background levels of 129I were handled. Values from 104 to 105 atoms cm-2 day-1 were recorded in another room where environmental samples, such as the samples derived from nuclear power plant accidents, were treated. Higher levels of 129I, ranging from 106 to 107 atoms cm-2 day-1, were recorded in rooms used for treating neutron-activated iodine. The experimental results show that the 129I level depended on the 129I sample-preparation histories for the respective rooms. It is possible to estimate the 129I contamination risk from the atmosphere to the samples by knowing the 129I level in the preparation room.

2.
J Environ Radioact ; 151 Pt 1: 209-217, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26492397

ABSTRACT

To evaluate the deposition density and extent of subsurface infiltration of (129)I and (137)Cs in the restricted area that was highly contaminated by the accident of Fukushima Dai-ichi Nuclear Power Plant, cumulative inventories of (129)I and (137)Cs, concentrations of (129)I and (137)Cs, and (129)I/(137)Cs ratio in 30-cm-long soil columns were compared with pre-accident levels from the same area. The cores were collected before and after the accident from locations of S-1 (4 km west of FDNPP) and S-2 (8 km west of FDNPP). Deposition densities of (129)I and (137)Cs in the soil following the accident were 0.90-2.33 Bq m(-2) and 0.80-4.04 MBq m(-2), respectively, which were 14-39 and 320-510 times larger than the pre-accident levels of (129)I (59.3-63.3 mBq m(-2)) and (137)Cs (2.51-7.88 kBq m(-2)), respectively. Approximately 90% of accident-derived (129)I and (137)Cs deposited in the 30-cm soil cores was concentrated in the surface layer from 0 to 44-95 kg m(-2) of mass depth (0-4.3-6.2 cm depth) and from 0 to 16-25 kg m(-2) of mass depth (0-1.0-3.1 cm depth), respectively. The relaxation mass depths (h0) of 10.8-11.2 kg m(-2) for (129)I estimated in the previous study were larger than those of 8.1-10.6 kg m(-2) for (137)Cs at both sites, owing to the larger infiltration depth of radioiodine mainly by the gravitational water penetration in the surface soil in our study sites. Approximately 7-9% of the accident-derived (129)I was present in the lower layer from 44 to 100 kg m(-2) (4.3-8.6 cm depth) at S-1, and from 95 to 160 kg m(-2) (6.2-10.2 cm depth) at S-2. Approximately 1% of (137)Cs seems to infiltrate deeper than (129)I in the lower layer at each site in contrast to the surface layer.


Subject(s)
Cesium Radioisotopes/analysis , Fukushima Nuclear Accident , Iodine Radioisotopes/analysis , Radiation Monitoring , Soil Pollutants, Radioactive/analysis , Japan , Nuclear Power Plants , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...