Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
STAR Protoc ; 5(2): 103051, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38700978

ABSTRACT

Phospholipids are important biomolecules for the study of lipidomics, signal transduction, biodiesel, and synthetic biology; however, it is difficult to synthesize and analyze phospholipids in a defined in vitro condition. Here, we present a protocol for in vitro production and quantification of phospholipids. We describe steps for preparing a cell-free system consisting of fatty acid synthesis and a gene expression system that synthesizes acyltransferases on liposomes. The whole reaction can be completed within a day and the products are quantified by liquid chromatography-mass spectrometry. For complete details on the use and execution of this protocol, please refer to Eto et al.1.


Subject(s)
Cell-Free System , Fatty Acids , Phospholipids , Phospholipids/metabolism , Phospholipids/biosynthesis , Fatty Acids/metabolism , Fatty Acids/biosynthesis , Cell-Free System/metabolism , Gene Expression/genetics , Liposomes/metabolism , Liposomes/chemistry , Chromatography, Liquid/methods , Acyltransferases/genetics , Acyltransferases/metabolism , Mass Spectrometry/methods
2.
Commun Biol ; 5(1): 1016, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36167778

ABSTRACT

Construction of living artificial cells from genes and molecules can expand our understanding of life system and establish a new aspect of bioengineering. However, growth and division of cell membrane that are basis of cell proliferation are still difficult to reconstruct because a high-yielding phospholipid synthesis system has not been established. Here, we developed a cell-free phospholipid synthesis system that combines fatty acid synthesis and cell-free gene expression system synthesizing acyltransferases. The synthesized fatty acids were sequentially converted into phosphatidic acids by the cell-free synthesized acyltransferases. Because the system can avoid the accumulation of intermediates inhibiting lipid synthesis, sub-millimolar phospholipids could be synthesized within a single reaction mixture. We also performed phospholipid synthesis inside phospholipid membrane vesicles, which encapsulated all the components, and showed the phospholipids localized onto the mother membrane. Our approach would be a platform for the construction of self-reproducing artificial cells since the membrane can grow sustainably.


Subject(s)
Escherichia coli , Fatty Acids , Acyltransferases/genetics , Cell Membrane/metabolism , Escherichia coli/genetics , Fatty Acids/metabolism , Phosphatidic Acids/metabolism
3.
Biochem Biophys Res Commun ; 516(2): 578-583, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31235252

ABSTRACT

DNMT1 is a C5-DNA methyltransferase that plays a pivotal role in DNA methylation maintenance. During early and mid S-phase, DNMT1 accumulates at DNA replication sites by binding to proliferating cell nuclear antigen (PCNA), an essential factor for DNA replication, through a PIP box motif. However, the molecular mechanism by which the DNMT1 PIP box motif binds to PCNA remains unclear. Here, we report the crystal structure of PCNA bound to DNMT1 PIP box peptide. The structure reveals the detailed interaction between PCNA and DNMT1 PIP box; conserved glutamine and hydrophobic/aromatic residues in the PIP box are recognized by the Q- and hydrophobic pockets of PCNA, respectively. The structure also shows novel intramolecular interactions within the PIP box motif, which stabilize the helix conformation in the PIP box. Our data provide structural insight into the recruitment of DNMT1 to replication sites by PCNA.


Subject(s)
DNA (Cytosine-5-)-Methyltransferase 1/chemistry , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , Proliferating Cell Nuclear Antigen/chemistry , Amino Acid Sequence , DNA Methylation , Humans , Models, Molecular , Proliferating Cell Nuclear Antigen/metabolism , Protein Binding , Protein Domains
4.
Structure ; 27(3): 485-496.e7, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30639225

ABSTRACT

The protein UHRF1 is crucial for DNA methylation maintenance. The tandem Tudor domain (TTD) of UHRF1 binds histone H3K9me2/3 with micromolar affinity, as well as unmethylated linker regions within UHRF1 itself, causing auto-inhibition. Recently, we showed that a methylated histone-like region of DNA ligase 1 (LIG1K126me2/me3) binds the UHRF1 TTD with nanomolar affinity, permitting UHRF1 recruitment to chromatin. Here we report the crystal structure of the UHRF1 TTD bound to a LIG1K126me3 peptide. The data explain the basis for the high TTD-binding affinity of LIG1K126me3 and reveal that the interaction may be regulated by phosphorylation. Binding of LIG1K126me3 switches the overall structure of UHRF1 from a closed to a flexible conformation, suggesting that auto-inhibition is relieved. Our results provide structural insight into how UHRF1 performs its key function in epigenetic maintenance.


Subject(s)
CCAAT-Enhancer-Binding Proteins/chemistry , CCAAT-Enhancer-Binding Proteins/metabolism , DNA Ligase ATP/chemistry , DNA Ligase ATP/metabolism , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Arginine/metabolism , Binding Sites , Crystallography, X-Ray , Epigenesis, Genetic , Gene Expression Regulation , Histones/metabolism , Humans , Methylation , Models, Molecular , Phosphorylation , Protein Conformation , Protein Domains
5.
Mol Cell ; 68(2): 350-360.e7, 2017 Oct 19.
Article in English | MEDLINE | ID: mdl-29053958

ABSTRACT

The proper location and timing of Dnmt1 activation are essential for DNA methylation maintenance. We demonstrate here that Dnmt1 utilizes two-mono-ubiquitylated histone H3 as a unique ubiquitin mark for its recruitment to and activation at DNA methylation sites. The crystal structure of the replication foci targeting sequence (RFTS) of Dnmt1 in complex with H3-K18Ub/23Ub reveals striking differences to the known ubiquitin-recognition structures. The two ubiquitins are simultaneously bound to the RFTS with a combination of canonical hydrophobic and atypical hydrophilic interactions. The C-lobe of RFTS, together with the K23Ub surface, also recognizes the N-terminal tail of H3. The binding of H3-K18Ub/23Ub results in spatial rearrangement of two lobes in the RFTS, suggesting the opening of its active site. Actually, incubation of Dnmt1 with H3-K18Ub/23Ub increases its catalytic activity in vitro. Our results therefore shed light on the essential role of a unique ubiquitin-binding module in DNA methylation maintenance.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/chemistry , DNA Methylation , Histones/chemistry , Ubiquitin/chemistry , Animals , Crystallography, X-Ray , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , Histones/genetics , Histones/metabolism , Humans , Protein Binding , Protein Structure, Quaternary , Ubiquitin/genetics , Ubiquitin/metabolism , Xenopus laevis
6.
Carcinogenesis ; 27(12): 2448-54, 2006 Dec.
Article in English | MEDLINE | ID: mdl-16774934

ABSTRACT

Fifty single-nucleotide polymorphisms (SNPs) associated with amino acid changes in 36 genes involved in diverse DNA repair pathways were assessed for associations with risk for small cell lung carcinoma (SCLC) by a case-control study consisting of 211 SCLC cases and 685 controls. An SNP, Val83Met, in the MTH1 (microtT homolog 1) gene encoding a triphosphatase that hydrolyzes pro-mutagenic oxidized nucleoside triphosphates, such as 8-hydroxy-dGTP and 2-hydroxy-dATP, showed the strongest and a significant association with SCLC risk [odds ratio (OR)=1.6, 95% confidence interval (CI): 1.2-2.2, P=0.004], while three other SNPs in the TP53, BLM and SNM1 genes, respectively, also showed marginal associations (0.05

Subject(s)
Carcinoma, Small Cell/genetics , DNA Repair Enzymes/genetics , Lung Neoplasms/genetics , Phosphoric Monoester Hydrolases/genetics , Polymorphism, Single Nucleotide , Adult , Aged , Amino Acid Substitution , Carcinoma, Small Cell/epidemiology , Case-Control Studies , Exons , Female , Humans , Lung Neoplasms/epidemiology , Male , Middle Aged , Reference Values , Risk Factors , Smoking/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...