Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(4): e0300716, 2024.
Article in English | MEDLINE | ID: mdl-38578764

ABSTRACT

BACKGROUND AND PURPOSE: Mean pulmonary artery pressure (mPAP) is a key index for chronic thromboembolic pulmonary hypertension (CTEPH). Using machine learning, we attempted to construct an accurate prediction model for mPAP in patients with CTEPH. METHODS: A total of 136 patients diagnosed with CTEPH were included, for whom mPAP was measured. The following patient data were used as explanatory variables in the model: basic patient information (age and sex), blood tests (brain natriuretic peptide (BNP)), echocardiography (tricuspid valve pressure gradient (TRPG)), and chest radiography (cardiothoracic ratio (CTR), right second arc ratio, and presence of avascular area). Seven machine learning methods including linear regression were used for the multivariable prediction models. Additionally, prediction models were constructed using the AutoML software. Among the 136 patients, 2/3 and 1/3 were used as training and validation sets, respectively. The average of R squared was obtained from 10 different data splittings of the training and validation sets. RESULTS: The optimal machine learning model was linear regression (averaged R squared, 0.360). The optimal combination of explanatory variables with linear regression was age, BNP level, TRPG level, and CTR (averaged R squared, 0.388). The R squared of the optimal multivariable linear regression model was higher than that of the univariable linear regression model with only TRPG. CONCLUSION: We constructed a more accurate prediction model for mPAP in patients with CTEPH than a model of TRPG only. The prediction performance of our model was improved by selecting the optimal machine learning method and combination of explanatory variables.


Subject(s)
Hypertension, Pulmonary , Pulmonary Embolism , Humans , Hypertension, Pulmonary/diagnosis , Arterial Pressure , Echocardiography/methods , Tricuspid Valve , Natriuretic Peptide, Brain , Pulmonary Embolism/complications , Pulmonary Embolism/diagnostic imaging , Chronic Disease
2.
Acad Radiol ; 31(3): 822-829, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37914626

ABSTRACT

RATIONALE AND OBJECTIVES: Pericardial fat (PF)-the thoracic visceral fat surrounding the heart-promotes the development of coronary artery disease by inducing inflammation of the coronary arteries. To evaluate PF, we generated pericardial fat count images (PFCIs) from chest radiographs (CXRs) using a dedicated deep-learning model. MATERIALS AND METHODS: We reviewed data of 269 consecutive patients who underwent coronary computed tomography (CT). We excluded patients with metal implants, pleural effusion, history of thoracic surgery, or malignancy. Thus, the data of 191 patients were used. We generated PFCIs from the projection of three-dimensional CT images, wherein fat accumulation was represented by a high pixel value. Three different deep-learning models, including CycleGAN were combined in the proposed method to generate PFCIs from CXRs. A single CycleGAN-based model was used to generate PFCIs from CXRs for comparison with the proposed method. To evaluate the image quality of the generated PFCIs, structural similarity index measure (SSIM), mean squared error (MSE), and mean absolute error (MAE) of (i) the PFCI generated using the proposed method and (ii) the PFCI generated using the single model were compared. RESULTS: The mean SSIM, MSE, and MAE were 8.56 × 10-1, 1.28 × 10-2, and 3.57 × 10-2, respectively, for the proposed model, and 7.62 × 10-1, 1.98 × 10-2, and 5.04 × 10-2, respectively, for the single CycleGAN-based model. CONCLUSION: PFCIs generated from CXRs with the proposed model showed better performance than those generated with the single model. The evaluation of PF without CT may be possible using the proposed method.


Subject(s)
Deep Learning , Humans , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional , Tomography, X-Ray Computed
3.
PeerJ Comput Sci ; 9: e1620, 2023.
Article in English | MEDLINE | ID: mdl-37869462

ABSTRACT

Purpose: The purpose of this study is to compare two libraries dedicated to the Markov chain Monte Carlo method: pystan and numpyro. In the comparison, we mainly focused on the agreement of estimated latent parameters and the performance of sampling using the Markov chain Monte Carlo method in Bayesian item response theory (IRT). Materials and methods: Bayesian 1PL-IRT and 2PL-IRT were implemented with pystan and numpyro. Then, the Bayesian 1PL-IRT and 2PL-IRT were applied to two types of medical data obtained from a published article. The same prior distributions of latent parameters were used in both pystan and numpyro. Estimation results of latent parameters of 1PL-IRT and 2PL-IRT were compared between pystan and numpyro. Additionally, the computational cost of the Markov chain Monte Carlo method was compared between the two libraries. To evaluate the computational cost of IRT models, simulation data were generated from the medical data and numpyro. Results: For all the combinations of IRT types (1PL-IRT or 2PL-IRT) and medical data types, the mean and standard deviation of the estimated latent parameters were in good agreement between pystan and numpyro. In most cases, the sampling time using the Markov chain Monte Carlo method was shorter in numpyro than that in pystan. When the large-sized simulation data were used, numpyro with a graphics processing unit was useful for reducing the sampling time. Conclusion: Numpyro and pystan were useful for applying the Bayesian 1PL-IRT and 2PL-IRT. Our results show that the two libraries yielded similar estimation result and that regarding to sampling time, the fastest libraries differed based on the dataset size.

4.
Sci Rep ; 13(1): 17533, 2023 10 16.
Article in English | MEDLINE | ID: mdl-37845348

ABSTRACT

To evaluate the diagnostic performance of our deep learning (DL) model of COVID-19 and investigate whether the diagnostic performance of radiologists was improved by referring to our model. Our datasets contained chest X-rays (CXRs) for the following three categories: normal (NORMAL), non-COVID-19 pneumonia (PNEUMONIA), and COVID-19 pneumonia (COVID). We used two public datasets and private dataset collected from eight hospitals for the development and external validation of our DL model (26,393 CXRs). Eight radiologists performed two reading sessions: one session was performed with reference to CXRs only, and the other was performed with reference to both CXRs and the results of the DL model. The evaluation metrics for the reading session were accuracy, sensitivity, specificity, and area under the curve (AUC). The accuracy of our DL model was 0.733, and that of the eight radiologists without DL was 0.696 ± 0.031. There was a significant difference in AUC between the radiologists with and without DL for COVID versus NORMAL or PNEUMONIA (p = 0.0038). Our DL model alone showed better diagnostic performance than that of most radiologists. In addition, our model significantly improved the diagnostic performance of radiologists for COVID versus NORMAL or PNEUMONIA.


Subject(s)
COVID-19 , Deep Learning , Pneumonia , Humans , COVID-19/diagnostic imaging , COVID-19 Testing , X-Rays , Tomography, X-Ray Computed/methods , Pneumonia/diagnostic imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Radiologists , Computers , Retrospective Studies
5.
J Pediatr Hematol Oncol ; 39(5): e285-e289, 2017 07.
Article in English | MEDLINE | ID: mdl-28267084

ABSTRACT

Liver fibrosis is one of the common complications of transient myeloproliferative disorder (TMD) in Down syndrome (DS), but the exact molecular pathogenesis is largely unknown. We herein report a neonate of DS with liver fibrosis associated with TMD, in which we performed the serial profibrogenic cytokines analyses. We found the active monocyte chemoattractant protein-1 expression in the affected liver tissue and also found that both serum and urinary monocyte chemoattractant protein-1 concentrations are noninvasive biomarkers of liver fibrosis. We also showed a prospective of the future anticytokine therapy with herbal medicine for the liver fibrosis associated with TMD in DS.


Subject(s)
Chemokine CCL2/analysis , Down Syndrome/complications , Leukemoid Reaction/complications , Liver Cirrhosis/diagnosis , Biomarkers , Cytokines/analysis , Diagnosis, Differential , Humans , Infant, Newborn , Liver/chemistry , Liver/pathology , Liver Cirrhosis/etiology
6.
J Biol Chem ; 285(16): 11913-21, 2010 Apr 16.
Article in English | MEDLINE | ID: mdl-20167597

ABSTRACT

NASP (nuclear autoantigenic sperm protein) is a member of the N1/N2 family, which is widely conserved among eukaryotes. Human NASP reportedly prefers to bind to histones H3.H4 and the linker histone H1, as compared with H2A.H2B, and is anticipated to function as an H3.H4 chaperone for nucleosome assembly. However, the direct nucleosome assembly activity of human NASP has not been reported so far. In humans, two spliced isoforms, somatic and testicular NASPs (sNASP and tNASP, respectively) were identified. In the present study we purified human sNASP and found that sNASP efficiently promoted the assembly of nucleosomes containing the conventional H3.1, H3.2, H3.3, or centromere-specific CENP-A. On the other hand, sNASP inefficiently promoted nucleosome assembly with H3T, a testis-specific H3 variant. Mutational analyses revealed that the Met-71 residue of H3T is responsible for this inefficient nucleosome formation by sNASP. Tetrasomes, composed of the H3.H4 tetramer and DNA without H2A.H2B, were efficiently formed by the sNASP-mediated nucleosome-assembly reaction. A deletion analysis of sNASP revealed that the central region, amino acid residues 26-325, of sNASP is responsible for nucleosome assembly in vitro. These experiments are the first demonstration that human NASP directly promotes nucleosome assembly and provide compelling evidence that sNASP is a bona fide histone chaperone for H3.H4.


Subject(s)
Autoantigens/metabolism , Nuclear Proteins/metabolism , Nucleosomes/metabolism , Alternative Splicing , Amino Acid Substitution , Autoantigens/genetics , Base Sequence , Binding Sites/genetics , Centromere Protein A , Chromosomal Proteins, Non-Histone/metabolism , DNA Primers/genetics , Histones/chemistry , Histones/genetics , Histones/metabolism , Humans , In Vitro Techniques , Male , Mutagenesis, Site-Directed , Nuclear Proteins/genetics , Nucleosomes/genetics , Nucleosomes/immunology , Protein Binding , Proteins/genetics , Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Deletion , Spermatozoa/immunology , Spermatozoa/metabolism , Testis/immunology , Testis/metabolism , tRNA Methyltransferases
SELECTION OF CITATIONS
SEARCH DETAIL
...