Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Soft Matter ; 20(16): 3458-3463, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38567457

ABSTRACT

We studied circular papers impregnated with camphor (CPs) and CPs with magnets (MCPs) as self-propelled objects floating on water under the compression of the water surface as an inanimate system for evacuation in an emergency. Two water chambers-Cin and Cout-were connected via a plastic gate, and eight CPs or eight MCPs were placed on Cin. We monitored the movement of the CPs or MCPs from Cin to Cout when the gate was opened and the area of Cin (Ain) was decreased using a barrier. When Ain was large, CPs moved stochastically from Cin to Cout while exhibiting random motion. The escape probability from Cin to Cout (P) at time t = 20 s increased with a decrease in Ain, and the rate of increase in P increased depending on the width of the gate (Wg). By contrast, clustering was observed for MCPs. Consequently, P of MCPs was lower than that of CPs. The difference in the surface tension between Cin and Cout (Δγ) increased with a decrease in Ain. P is discussed in relation to Δγ as the driving force for emergencies and the repulsive forces between CPs or attractive forces between MCPs. These results suggest that the repulsive force enhances the self-propulsion of objects towards the gate, that is, as a result, higher values of P are obtained.

2.
Langmuir ; 40(13): 6878-6883, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38501274

ABSTRACT

Certain odors have been shown not only to cause health problems and stress but also to affect skin barrier function. Therefore, it is important to understand olfactory masking to develop effective fragrances to mask malodors. However, olfaction and olfactory masking mechanisms are not yet fully understood. To understand the mechanism of the masking effect that has been studied, the responses of several target substance (TS) molecules-1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) mixed molecular layers to odorant (OD) molecules were examined as a simple experimental model of epithelial cellular membranes injured by TS molecules. Here, we examined trans-2-nonenal, 1-nonanal, trans-2-decenal, and 1-decanal as TS molecules to clarify the effects of double bonds and hydrocarbon chain lengths on the phospholipid molecular layer. In addition, benzaldehyde and cyclohexanecarboxaldehyde were utilized as OD molecules to clarify the masking effect of the aromatic ring. Surface pressure (Π)-area (A) isotherms were measured to clarify the adsorption or desorption of TS and OD molecules on the DOPC molecular layer. In addition, Fourier transform infrared spectroscopy was performed to clarify the interactions among DOPC, TS, and OD molecules. We found that TS molecules with and without double bonds had different effects on the DOPC molecular layer and that molecules with shorter chain lengths had greater effects on the DOPC molecular layer. Furthermore, OD molecules with aromatic rings counteracted the effects of the TS molecules. On the basis of this research, not only a detailed mechanism by which odor molecules affect lipid membranes without mediating olfactory receptors is elucidated but also more effective OD molecules with masking effects are proposed.


Subject(s)
Lipid Bilayers , Phosphatidylcholines , Molecular Structure , Lipid Bilayers/chemistry , Phosphatidylcholines/chemistry , Phospholipids/chemistry , Glycerylphosphorylcholine
3.
J Colloid Interface Sci ; 663: 329-335, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38402826

ABSTRACT

A benzoic acid (BA) disk was investigated as a novel self-propelled object whose driving force was the difference in surface tension. 4-Stearoyl amidobenzoic acid (SABA) was synthesized as an amphiphile to control the nature of motion based on intermolecular interactions between BA and SABA. The BA disk exhibited characteristic motion depending on the surface density of the SABA on the aqueous phase, that is, reciprocating motion as a one-dimensional motion and restricted and unrestricted motion as a two-dimensional motion. The trajectory of the reciprocating motion was determined by the initial direction of motion, and the boundary between an aqueous surface and the BA-SABA condensed molecular layer was used as the field's boundary. The presented results indicate that the characteristic nature of motion can be designed at the molecular level based on the intermolecular interactions between an energy-source molecule and an amphiphile.

4.
Phys Chem Chem Phys ; 26(10): 8488-8493, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38411193

ABSTRACT

We studied the self-propulsion of a camphor disk floating on a water surface using two types of ionic liquids (hexylammonium-trifluoroacetate (HHexam-TFA) and hexylethylenediaminium-trifluoroacetate (HHexen-TFA)). Bifurcation between continuous, oscillatory, and no motion was observed depending on the concentration of the ionic liquid. The bifurcation concentration between oscillatory and no motion for HHexam-TFA was lower than that for HHexen-TFA. The different bifurcation concentrations are discussed in relation to the surface tension and Fourier transform infrared spectra of the mixtures of camphor and ionic liquids. These results suggest that the interaction between the ionic liquid molecules at the air/water interface is weakened by the addition of camphor molecules and the features of self-propulsion vary due to the change in the driving force.

5.
Anal Biochem ; 687: 115452, 2024 04.
Article in English | MEDLINE | ID: mdl-38158105

ABSTRACT

Low-molecular drug discovery using DNA-encoded chemical library (DEL) is a powerful technology, although improving the partitioning efficiency of affinity ligands from DEL remains a challenge. Here, we assessed the usefulness of microbead-assisted capillary electrophoresis (MACE) for partitioning peptide-oligonucleotide conjugates (POCs), in which high selection pressure is applied because of different mobility of target-modified beads and POCs during CE. Despite their different charge characteristics, all POCs were well separated from the beads. When bead extraction was performed, the tagged DNA amplification was observed only in the couple of a ligand/target, suggesting proficiently specific partitioning of peptide ligands was accomplished using MACE.


Subject(s)
Oligonucleotides , Peptides , Microspheres , Peptides/chemistry , Oligonucleotides/chemistry , Electrophoresis, Capillary/methods , DNA/chemistry , DNA, Single-Stranded
6.
ACS Sens ; 8(12): 4494-4503, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38060767

ABSTRACT

We propose a novel odor-sensing system based on the dynamic response of phospholipid molecular layers for artificial olfaction. Organisms obtain information about their surroundings based on multidimensional information obtained from sniffing, i.e., periodic perturbations. Semiconductor- and receptor-based odor sensors have been developed previously. However, these sensors predominantly identify odors based on one-dimensional information, which limits the type of odor molecule they can identify. Therefore, the development of odor sensors that mimic the olfactory systems of living organisms is useful to overcome this limitation. In this study, we developed a novel odor-sensing system based on the dynamics of phospholipids that responds delicately to chemical substances at room temperature using multidimensional information obtained from periodic perturbations. Odor molecules are periodically supplied to the phospholipid molecular layer as an input sample. The waveform of the surface tension of the phospholipid molecular layer changes depending on the odor molecules and serves as an output. Such characteristic responses originating from the dynamics of odor molecules on the phospholipid molecular layer can be reproduced numerically. The phospholipid molecular layer amplified the information originating from the odor molecule, and the mechanism was evaluated by using surface pressure-area isotherms. This paper offers a platform for an interface-chemistry-based artificial sniffing system as an active sensor and a novel olfactory mechanism via physicochemical responses of the receptor-independent membranes of the organism.


Subject(s)
Odorants , Smell , Smell/physiology
7.
J Phys Chem Lett ; 14(41): 9279-9284, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37815116

ABSTRACT

An organic droplet containing thymol acetate (TA) floating on a sodium dodecyl sulfate aqueous phase was examined to develop a novel self-propelled object based on reaction kinetics. Two types of oscillatory motion, without back-and-forth motion (Osc I) and with back-and-forth motion (Osc II), were observed by varying the pH of the aqueous phase. The oscillation frequency reached its maximum at pH 9.6, coinciding with the occurrence of Osc II. The kinetics of the hydrolysis of TA as a reactant and the acid-base equilibrium between thymol (TOH) and the thymolate ion (TO-) as products were evaluated experimentally. The driving force of motion was discussed on the basis of the interfacial tension. The pH dependence of the oscillation frequency and the selection of Osc I or II were attributed to the equilibrium between the TOH and TO-. These results highlight the possibility of designing self-propulsion systems by considering reaction kinetics and chemical properties.

8.
Phys Chem Chem Phys ; 25(20): 14546-14551, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37191103

ABSTRACT

We have developed a self-propelled object, which is composed of a plastic cup and a camphor disk, on water to reflect its three-dimensional shape in the nature of motion. The self-propelled object, of which the driving force of motion is the difference in the surface tension, exhibited oscillatory motion between motion and rest. The period and the maximum speed of oscillatory motion increased and decreased depending on the height of the cup, h, respectively. Two types of diffusion coefficients were estimated based on the diffusion of camphor molecules which were indirectly visualized using 7-hydroxycoumarin. The experimental result on the period of oscillatory motion depending on h could be reproduced by the numerical calculation based on the diffusion of camphor molecules around the object and the diffusion coefficients which were experimentally estimated. The experimental results suggest that characteristic features of motion can be created based on the three-dimensional shape of the object.

9.
Phys Chem Chem Phys ; 25(18): 12974-12978, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37099288

ABSTRACT

Chemical gardens formed from two metal salts (MCl2 or MSO4) have been investigated to understand the effects of mixing on the growth of precipitate tubes. The growth of tubes can be classified into three types, i.e., collaborative, inhibited, and individual growth, depending on the combination of the two metal salts. Characteristic features of tube growth are discussed in relation to the flow near the tip of the tube controlled by osmotic pressure and the solubility product, Ksp, for M(OH)2. The present study can be interpreted as an inanimate model system of symbiosis among different species, such as mixed cropping systems and survival among different kinds of microbial cells.

10.
J Colloid Interface Sci ; 639: 324-332, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36805757

ABSTRACT

Reconstructing recursive chemotaxis in inanimate self-propelled objects is inevitable in the development of recursively and autonomously artificial mass transport systems. However, the fabrication of inanimately recursive chemotaxis has been extremely challenging because of the difficulty in introducing competitive positive and negative feedback into an inanimate self-propelled object. Herein, a coumarin derivative (coumarin, 4-methylcoumarin (4-MC), or 6-methylcoumarin (6-MC))-based disk floated on water as a self-propelled object exhibited characteristic features of motion; these features include continuous motion, repetition between positive and negative chemotaxis to the Na3PO4 powder as a base stimulus, and oscillatory motion above the Na3PO4 powder depending on the Na3PO4 density of the powder and the functional group of coumarin derivatives. The mechanism of the characteristic features of motion to the base stimulus is discussed in relation to the surface tension of the coumarin derivatives as the driving force of motion and the reaction rate of the hydrolysis between coumarin derivatives and OH- obtained from Na3PO4. This study suggests a novel avenue for developing a recursive chemotactic system coupled with reaction kinetics in self-organized motion.

11.
Langmuir ; 39(5): 2073-2079, 2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36692295

ABSTRACT

Subsequent synthesis and detection using droplets as microreactors have shown promise in the development of novel materials and drugs because microreactors enable small-scale synthesis and detection of covalent/non-covalent intermolecular interactions. Self-organization exhibited by autonomous droplets under non-equilibrium conditions is beneficial for manipulating the sequentiality and selectivity of droplet coalescence because expensive equipment or elaborate techniques are not required with the autonomy of droplets. However, to our knowledge, selective coalescence caused by the collective motion of self-propelled droplets has not been demonstrated in inanimate systems. Here, we report sequentially selective coalescence based on the dynamic collective pattern of self-propelled droplets composed of ethyl salicylate (ES) or butyl salicylate (BS). When ES and BS droplets were placed on an aqueous sodium dodecyl sulfate (SDS) solution, the collective motion of droplets resulted in three stages of selective coalescence on the time development. Initially, coalescence was observed only between different types of self-propelled droplets. Subsequently, the formed droplets selectively coalesced with ES droplets. Finally, mature droplets merged with BS droplets. The sequentially selective coalescence was discussed from the dynamic pattern formation of swarming droplets and the collapse of the SDS monolayer at the o/w interface caused by the difference in Laplace pressure and the interfacial instability at the contact point between droplets. Thus, this study formulates a strategy of sequentially selective coalescence of droplets via the collective motion of non-identical self-propelled droplets, promoting a new type of powerful and efficient automation technology based on an autonomous inanimate manner of spatiotemporal pattern formation under non-equilibrium conditions for the droplet manipulation.

12.
Life (Basel) ; 12(10)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36295070

ABSTRACT

In this review, we discuss various methods of reproducing life dynamics using a constructive approach. An increase in the structural complexity of a model protocell is accompanied by an increase in the stage of reproduction of a compartment (giant vesicle; GV) from simple reproduction to linked reproduction with the replication of information molecules (DNA), and eventually to recursive proliferation of a model protocell. An encounter between a plural protic catalyst (C) and DNA within a GV membrane containing a plural cationic lipid (V) spontaneously forms a supramolecular catalyst (C@DNA) that catalyzes the production of cationic membrane lipid V. The local formation of V causes budding deformation of the GV and equivolume divisions. The length of the DNA strand influences the frequency of proliferation, associated with the emergence of a primitive information flow that induces phenotypic plasticity in response to environmental conditions. A predominant protocell appears from the competitive proliferation of protocells containing DNA with different strand lengths, leading to an evolvable model protocell. Recently, peptides of amino acid thioesters have been used to construct peptide droplets through liquid-liquid phase separation. These droplets grew, owing to the supply of nutrients, and were divided repeatedly under a physical stimulus. This proposed chemical system demonstrates a new perspective of the origins of membraneless protocells, i.e., the "droplet world" hypothesis. Proliferative model protocells can be regarded as autonomous supramolecular machines. This concept of this review may open new horizons of "evolution" for intelligent supramolecular machines and robotics.

13.
Life (Basel) ; 11(12)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34947896

ABSTRACT

The linkage between the self-reproduction of compartments and the replication of DNA in a compartment is a crucial requirement for cellular life. In our giant vesicle (GV)-based model protocell, this linkage is achieved through the action of a supramolecular catalyst composed of membrane-intruded DNA and amphiphilic acid catalysts (C@DNA) in a GV membrane. In this study, we examined colocalization analysis for the formation of the supramolecular catalyst using a confocal laser scanning fluorescence microscope with high sensitivity and resolution. Red fluorescence spots emitted from DNA tagged with Texas Red (Texas Red-DNA) were observed in a GV membrane stained with phospholipid tagged with BODIPY (BODIPY-HPC). To our knowledge, this is the first direct observation of DNA embedded in a GV-based model protocellular membrane containing cationic lipids. Colocalization analysis based on a histogram of frequencies of "normalized mean deviation product" revealed that the frequencies of positively correlated [lipophilic catalyst tagged with BODIPY (BODIPY-C) and Texas Red-DNA] were significantly higher than those of [BODIPY-HPC and Texas Red-DNA]. This result demonstrates the spontaneous formation of C@DNA in the GV membrane, which serves as a lipo-deoxyribozyme for producing membrane lipids from its precursor.

14.
Membranes (Basel) ; 11(11)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34832114

ABSTRACT

Two novel amphiphiles, N-(3-nitrophenyl)stearamide (MANA) and N,N'-(4-nitro-1,3-phenylene)distearamide (OPANA), were synthesized by reacting nitroanilines with one or two equivalents of stearic acid. We investigated how the molecular structures of these compounds influenced the characteristics of a self-propelled camphor disk placed on a monolayer of the synthesized amphiphiles. Three types of motion were observed at different surface pressures (Π): continuous motion (Π < 4 mN m-1), deceleration (4 mN ≤ Π ≤ 20 mN m-1), and no motion (Π > 20 mN m-1). The speed of the motion of the camphor disks was inversely related to Π for both MANA and OPANA at the temperatures tested, when Π increased in the respective molecular layers under compression. The spectroscopic evidence from UV-Vis, NMR, and ESI-TOF-MS revealed that the dependence of the speed of the motion on Π originates from the intermolecular interactions that are present in the monolayers. This study suggests that it is possible to control the self-propelled motion by manipulating contributing factors at the molecular level.

15.
Nat Commun ; 12(1): 5487, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34561428

ABSTRACT

The hypothesis that prebiotic molecules were transformed into polymers that evolved into proliferating molecular assemblages and eventually a primitive cell was first proposed about 100 years ago. To the best of our knowledge, however, no model of a proliferating prebiotic system has yet been realised because different conditions are required for polymer generation and self-assembly. In this study, we identify conditions suitable for concurrent peptide generation and self-assembly, and we show how a proliferating peptide-based droplet could be created by using synthesised amino acid thioesters as prebiotic monomers. Oligopeptides generated from the monomers spontaneously formed droplets through liquid-liquid phase separation in water. The droplets underwent a steady growth-division cycle by periodic addition of monomers through autocatalytic self-reproduction. Heterogeneous enrichment of RNA and lipids within droplets enabled RNA to protect the droplet from dissolution by lipids. These results provide experimental constructs for origins-of-life research and open up directions in the development of peptide-based materials.


Subject(s)
Amino Acids/chemical synthesis , Biopolymers/chemistry , Lipids/chemistry , Oligopeptides/chemical synthesis , Origin of Life , RNA/chemistry , Biochemistry/methods , Catalysis , Esters/chemistry , Phase Transition , Sulfhydryl Compounds/chemistry , Water/chemistry
16.
Langmuir ; 37(23): 7039-7042, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34048652

ABSTRACT

The route selection of self-propelled filter papers impregnated with camphor for two-branched water channels was investigated. The two-branched water channel was composed of a stem channel and two branch channels, and the branch channels were connected to the stem channel at a junction. When a single camphor paper reached the junction from the stem channel, it selected one of the two routes equivalently. Three or five camphor papers which were placed on a stem channel exhibited either alternate or random route selection depending on the characteristic length between the leading and following papers, Lc. That is, the alternate route selection of the camphor papers for the two-branched water channels was observed at Lc ≤ 25 mm. By contrast, the alternate route selection was broken at Lc > 25 mm. The physicochemical meaning of the threshold value, Lth ∼ 26 mm, between the alternate and random route selections was discussed based on the experimental results. In addition, the distribution length of camphor molecules developed from the leading camphor paper and the change in the spatial gradient of surface tension around the junction supports the value of Lth. These results suggest that autonomous phenomena using inanimate self-propelled objects are important to understand collective motion in living organisms.

17.
Micromachines (Basel) ; 11(6)2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32580457

ABSTRACT

As a supramolecular micromachine with information flow, a giant vesicle (GV)-based artificial cell that exhibits a linked proliferation between GV reproduction and internal DNA amplification has been explored in this study. The linked proliferation is controlled by a complex consisting of GV membrane-intruded DNA with acidic amphiphilic catalysts, working overall as a lipo-deoxyribozyme. Here, we investigated how a GV-based artificial cell containing this lipo-deoxyribozyme responds to diverse external and internal environments, changing its proliferative dynamics. We observed morphological changes (phenotypic expression) in GVs induced by the addition of membrane precursors with different intervals of addition (starvation periods). First, we focused on a new phenotype, the "multiple tubulated" form, which emerged after a long starvation period. Compared to other forms, the multiple tubulated form is characterized by a larger membrane surface with a heavily cationic charge. A second consideration is the effect of the chain length of encapsulated DNA on competitive proliferation. The competitive proliferation among three different species of artificial cells containing different lengths of DNA was investigated. The results clearly showed a distinct intervention in the proliferation dynamics of the artificial cells with each other. In this sense, our GV-based artificial cell can be regarded as an intelligent supramolecular machine responding to external and internal environments, providing a new concept for developing molecular machines and robotics.

18.
Sci Rep ; 9(1): 6916, 2019 05 06.
Article in English | MEDLINE | ID: mdl-31061467

ABSTRACT

DNA is an essential carrier of sequence-based genetic information for all life today. However, the chemical and physical properties of DNA may also affect the structure and dynamics of a vesicle-based model protocell in which it is encapsulated. To test these effects, we constructed a polyethylene glycol-grafted giant vesicle system capable of undergoing growth and division. The system incorporates a specific interaction between DNA and lipophilic catalysts as well as components of PCR. We found that vesicle division depends on the length of the encapsulated DNA, and the self-assembly of an internal supramolecular catalyst possibly leads to the direct causal relationship between DNA length and the capacity of the vesicle to self-reproduce. These results may help elucidate how nucleic acids could have functioned in the division of prebiotic protocells.


Subject(s)
Artificial Cells/metabolism , Cell Division , DNA/metabolism , Artificial Cells/cytology , DNA/genetics
19.
Chem Phys Lipids ; 222: 1-7, 2019 08.
Article in English | MEDLINE | ID: mdl-31002782

ABSTRACT

A novel phosphoric membrane lipid (phospholipid) bearing an oleyl group as one of the hydrophobic chains formed a liposome with a thin lamella in water. Since the anionic membrane of pre-existing liposomes acted as a catalytic surface in phosphate buffer, membrane lipids could be generated from their precursor in an autocatalytic manner without the inclusion of catalytic amphiphiles in the liposome. The morphological changes of this anionic liposome were monitored both by flow cytometry and optical microscopy, and it was found that the liposomes deformed into a budding shape, followed by division, after the addition of a membrane precursor. Hence, this anionic monocomponent liposome could be regarded as a sustainable self-reproducing system. This liposome was also able to provide a reaction cavity for enzymatic reactions, such as DNA amplification by a polymerase chain reaction.


Subject(s)
Liposomes/chemistry , Liposomes/chemical synthesis , Phospholipids/chemistry , Deoxyribonucleases/chemistry , Deoxyribonucleases/metabolism , Liposomes/metabolism , Molecular Structure , Particle Size , Phospholipids/chemical synthesis , Phospholipids/metabolism , Surface Properties
20.
Biochim Biophys Acta Gen Subj ; 1862(2): 358-364, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29129642

ABSTRACT

BACKGROUND: To imitate the essence of living systems via synthetic chemistry approaches has been attempted. With the progress in supramolecular chemistry, it has become possible to synthesize molecules of a size and complexity close to those of biomacromolecules. Recently, the combination of precisely designed supramolecules with biomolecules has generated structural platforms for designing and creating unique molecular systems. Bridging between synthetic chemistry and biomolecular science is also developing methodologies for the creation of artificial cellular systems. SCOPE OF REVIEW: This paper provides an overview of the recently expanding interdisciplinary research to fuse artificial molecules with biomolecules, that can deepen our understanding of the dynamical ordering of biomolecules. MAJOR CONCLUSIONS AND GENERAL SIGNIFICANCE: Using bottom-up approaches based on the precise chemical design, synthesis and hybridization of artificial molecules with biological materials have been realizing the construction of sophisticated platforms having the fundamental functions of living systems. The effective hybrid, molecular cyborg, approaches enable not only the establishment of dynamic systems mimicking nature and thus well-defined models for biophysical understanding, but also the creation of those with highly advanced, integrated functions. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato.


Subject(s)
Chemistry Techniques, Synthetic , Computational Biology , Macromolecular Substances/chemical synthesis , Macromolecular Substances/metabolism , Models, Biological , Animals , Humans , Kinetics , Molecular Dynamics Simulation , Molecular Structure , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...