Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Funct Plant Biol ; 46(10): 925-932, 2019 09.
Article in English | MEDLINE | ID: mdl-31217072

ABSTRACT

The heat shock protein 90 (HSP90) inhibitor, geldanamycin, is a chemical inducer of the heat shock response (HSR) in Arabidopsis. Geldanamycin is thought to activate the heat shock signal by dissociating the HSP90-heat shock factor (HSF) complex. Recent studies have indicated that plant HSP70 is also associated with HSF, suggesting that inhibition of HSP70 may induce the HSR. However, no studies have been conducted to test this hypothesis. Here, we found that a specific HSP70 inhibitor VER-155008 activated the promoter of a small HSP gene (At1 g53540, HSP17.6C-CI) of Arabidopsis, which was shown to be activated by geldanamycin and other HSP90 inhibitors. The production of HSP17.6C-CI, HSP70 and HSP90.1 proteins in Arabidopsis was enhanced by the addition of VER-155008. The reduction of chlorophyll contents by heat shock was ameliorated by VER-155008. Chaperone analyses indicated that VER-155008 inhibited the chaperone activities of wheat germ extract and human HSP70/HSP40, respectively. These results suggest that the inhibition of HSP70 by VER-155008 enhanced the heat tolerance of Arabidopsis by inducing the HSR in the plant.


Subject(s)
Arabidopsis , HSP70 Heat-Shock Proteins , Heat-Shock Response , Humans , Purine Nucleosides
2.
Plant Biotechnol (Tokyo) ; 33(5): 409-413, 2016.
Article in English | MEDLINE | ID: mdl-31275002

ABSTRACT

Sanguinarine is an isoquinoline alkaloid produced by Papaveraceae plants. Because sanguinarine has antimicrobial activity, it is believed to be related to the plants' chemical defense systems. However, its action against plants has not been well understood. A previous study reported that among 12 alkaloids, sanguinarine was the only compound which enhanced heat tolerance in Arabidopsis. Here we performed a promoter assay using a heat shock protein gene (HSP17.6C-CI) of Arabidopsis to assess the induction of heat shock responses by alkaloids. Although sanguinarine induced the heat shock response, the other 11 alkaloids did not. Sanguinarine promoted the production of HSP17.6C-CI protein, but berberine and papaverine, which are isoquinoline alkaloids as well as sanguinarine, did not promote it. It is known that geldanamycin, a small molecule chaperone inhibitor, activates the heat shock response in Arabidopsis. Although sanguinarine inhibited the chaperone activities of wheat germ extract much like geldanamycin, berberine and papaverine influenced the activities very little. These results suggest that sanguinarine may promote the heat shock response by regulating the chaperone activities in the way that geldanamycin does in plants.

3.
Antimicrob Agents Chemother ; 59(5): 2618-24, 2015 May.
Article in English | MEDLINE | ID: mdl-25691643

ABSTRACT

Quenching probe PCR (QP-PCR) analysis was used to determine the frequency of ganciclovir (GCV) resistance among clinical isolates of human herpesvirus 6B (HHV-6B) obtained from patients with primary viral infection and viral reactivation. Forty-two HHV-6B clinical isolates were repeatedly recovered from 15 hematopoietic stem cell transplant (HSCT) recipients, and 20 isolates were recovered from 20 exanthem subitum (ES) patients. Of the 15 HSCT recipients, 9 received GCV during the observation period; however, none of the ES patients were treated with GCV. Two established laboratory strains, Z29 and HST, were used as standards in this study. Regions 1 and 2 of the U69 gene of all of the clinical isolates demonstrated the same melting temperature as regions 1 and 2 of the Z29 strain. For region 3, the melting temperatures of all clinical isolates fell between the melting temperature of the plasmid containing the A462D single nucleotide polymorphism (SNP) and the melting temperature of the Z29 strain, and the melting temperatures profiles of all clinical isolates were similar to the melting temperature profile of the Japanese HST strain. As expected, none of the 20 clinical isolates recovered from the ES patients and the 14 isolates recovered from the HSCT recipients who did not receive GCV treatment carried the six known SNPs associated with GCV resistance. Interestingly, these six SNPs were not detected in the 28 clinical isolates recovered from the 9 HSCT recipients who received GCV. Additional sequence analysis of the U69 gene from the 15 representative isolates from the 15 HSCT recipients identified other SNPs. These SNPs were identical to those identified in the HST strain. Therefore, the rate of emergence of GCV-resistant HHV-6B strains appears to be relatively low, even in HSCT recipients treated with GCV.


Subject(s)
Ganciclovir/pharmacology , Herpesvirus 6, Human/genetics , Polymerase Chain Reaction , Adolescent , Adult , Drug Resistance, Viral/genetics , Female , Humans , Male , Middle Aged , Polymorphism, Genetic/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...