Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(18): 20437-20443, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38737038

ABSTRACT

Metal-nanoparticle (NP)/metal-organic framework (MOF) composites have attracted considerable attention as heterogeneous catalysts. Compared with porous carbon, silica, and alumina, the charge-transfer interaction between the metal NPs and the MOF accelerated the catalytic activity. In this study, PdRu bimetallic NPs were successfully immobilized on MOFs such as MIL-101(Cr) by using supercritical carbon dioxide. The STEM-EDX images show a uniform 3D distribution of the PdRu bimetallic NPs on MIL-101(Cr). The resulting PdRu@MIL-101(Cr) catalyst exhibited higher CO oxidation than monometal/MOF composites such as Pd@MIL-101(Cr) and Ru@MIL-101(Cr). Furthermore, PdRu@MIL-101(Cr) exhibited higher catalytic activity than PdRu@SiO2. This is because the particle size of the PdRu bimetallic NPs in MIL-101(Cr) was within the range of 2-3 nm. The synergistic effects were based on the combination of two metals, Pd and Ru, small bimetal particle formation, and charge-transfer interactions between the bimetal NPs and the MOF. These factors enhance the catalytic activity of the bimetal/MOF composites.

2.
ACS Biomater Sci Eng ; 9(7): 4269-4276, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37354100

ABSTRACT

Elucidating the fouling phenomena of polymer surfaces will facilitate the molecular design of high-performance biomedical devices. Here, we investigated the remarkable antifouling properties of two acrylate materials, poly(2-methoxyethyl acrylate) (PMEA) and poly(3-methoxypropionic acid vinyl ester) (PMePVE), which have a terminal methoxy group on the side chain, via molecular dynamics simulations of binary mixtures of acrylate/methacrylate trimers with n-pentane or 2,2-dimethylpropane (neopentane), that serve as the nonpolar organic probe (organic foulants). The second virial coefficient (B2) was determined to assess the aggregation/dispersion properties in the binary mixtures. The order of the B2 values for the trimer/pentane mixtures indicated that the terminal methoxy group of the side chain plays an important role in enhancing the fouling resistance to nonpolar organic foulants. Here, we hypothesized that the antifouling properties of PMEA/PMePVE surfaces originate from the resistance. To evaluate the molecular-level accessibility of organic foulants to acrylate/methacrylate materials, we examined the radial distribution functions (RDFs) of the terminal methyl groups of neopentane around the main chains of the acrylate/methacrylate trimers. As a result, the third distinct RDF peaks are observed only for the methacrylate trimers. The peaks are attributed to the hydrophobic interactions between the methyl group of neopentane and that of the main chain of the trimer. Accordingly, the methyl group of the main chain of methacrylate materials, such as poly(2-hydroxyethyl methacrylate) and poly(2-methoxyethyl methacrylate), unfavorably induces fouling with organic foulants. In this study, we clarify that preventing hydrophobic interactions between an organic foulant and polymeric material is essential for enhancing the antifouling property. Our approach has great potential for evaluating the molecular-level affinities of organic foulant with polymer surfaces for the molecular design of excellent antifouling polymeric materials.


Subject(s)
Biofouling , Molecular Dynamics Simulation , Molecular Structure , Biocompatible Materials , Biofouling/prevention & control , Polymers/pharmacology , Polymers/chemistry , Acrylates/pharmacology , Acrylates/chemistry , Methacrylates/pharmacology
3.
ACS Biomater Sci Eng ; 7(8): 3709-3717, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34328711

ABSTRACT

Improving hydrophilicity is a key factor for enhancing the biocompatibility of polymer surfaces. Nevertheless, previous studies have reported that poly(2-methoxyethyl acrylate) (PMEA) surfaces demonstrate markedly better biocompatibility than more hydrophilic poly(2-hydroxyethyl methacrylate) (PHEMA) surfaces. In this work, the origins of the excellent biocompatibility of the PMEA surface are investigated using molecular dynamics (MD) simulations of simplified binary mixtures of acrylate/methacrylate trimers and organic solvents, with n-nonane, 1,5-pentanediol, or 1-octanol serving as the probe organic foulants. The interactions between the acrylate/methacrylate trimers and solvent molecules were evaluated by calculating the radial distribution function (RDF), with the resulting curves indicating that the 2-methoxyethyl acrylate (MEA) trimer has a lower affinity for n-nonane molecules than the 2-hydroxyethyl methacrylate (HEMA) trimer. This result agrees with the experimental consensus that the biocompatibility of PMEA surfaces is better than that of PHEMA surfaces, supporting the hypothesis that the affinity between an acrylate/methacrylate trimer and a foulant molecule in a simplified binary mixture is a significant factor in determining a surface's antifouling properties. The RDF curves obtained for the other two solvent systems exhibited behavior that further highlighted the advantages of the PMEA surfaces as biocompatible polymers. In addition, the validity of employing the second virial coefficient (B2) as a predictor of antifouling properties was explored. The order of the B2 values of different binary mixtures indicated that the MEA trimers have the lowest affinities with n-nonane molecules, which confirms that although PMEA is more hydrophobic than PHEMA, it exhibits better biocompatibility. This analysis demonstrates that the MEA's weaker miscibility with nonpolar foulants contributes to the excellent biocompatibility of PMEA. Thus, B2 is a promising criterion for assessing the miscibility between acrylate/methacrylate materials and nonpolar organic foulants, which indicates the potential for predicting the antifouling properties of acrylate/methacrylate polymer materials by evaluating the value of B2.


Subject(s)
Biocompatible Materials , Molecular Dynamics Simulation , Acrylates , Methacrylates , Polyhydroxyethyl Methacrylate , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...