Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
NAR Genom Bioinform ; 3(4): lqab093, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34734181

ABSTRACT

Intra-tumor heterogeneity is a phenomenon in which mutation profiles differ from cell to cell within the same tumor and is observed in almost all tumors. Understanding intra-tumor heterogeneity is essential from the clinical perspective. Numerous methods have been developed to predict this phenomenon based on variant allele frequency. Among the methods, CloneSig models the variant allele frequency and mutation signatures simultaneously and provides an accurate clone decomposition. However, this method has limitations in terms of clone number selection and modeling. We propose SigTracer, a novel hierarchical Bayesian approach for analyzing intra-tumor heterogeneity based on mutation signatures to tackle these issues. We show that SigTracer predicts more reasonable clone decompositions than the existing methods against artificial data that mimic cancer genomes. We applied SigTracer to whole-genome sequences of blood cancer samples. The results were consistent with past findings that single base substitutions caused by a specific signature (previously reported as SBS9) related to the activation-induced cytidine deaminase intensively lie within immunoglobulin-coding regions for chronic lymphocytic leukemia samples. Furthermore, we showed that this signature mutates regions responsible for cell-cell adhesion. Accurate assignments of mutations to signatures by SigTracer can provide novel insights into signature origins and mutational processes.

2.
Comput Struct Biotechnol J ; 19: 3198-3208, 2021.
Article in English | MEDLINE | ID: mdl-34141139

ABSTRACT

Although remarkable advances have been reported in high-throughput sequencing, the ability to aptly analyze a substantial amount of rapidly generated biological (DNA/RNA/protein) sequencing data remains a critical hurdle. To tackle this issue, the application of natural language processing (NLP) to biological sequence analysis has received increased attention. In this method, biological sequences are regarded as sentences while the single nucleic acids/amino acids or k-mers in these sequences represent the words. Embedding is an essential step in NLP, which performs the conversion of these words into vectors. Specifically, representation learning is an approach used for this transformation process, which can be applied to biological sequences. Vectorized biological sequences can then be applied for function and structure estimation, or as input for other probabilistic models. Considering the importance and growing trend for the application of representation learning to biological research, in the present study, we have reviewed the existing knowledge in representation learning for biological sequence analysis.

3.
Genes (Basel) ; 11(10)2020 09 25.
Article in English | MEDLINE | ID: mdl-32992754

ABSTRACT

Mutation signatures are defined as the distribution of specific mutations such as activity of AID/APOBEC family proteins. Previous studies have reported numerous signatures, using matrix factorization methods for mutation catalogs. Different mutation signatures are active in different tumor types; hence, signature activity varies greatly among tumor types and becomes sparse. Because of this, many previous methods require dividing mutation catalogs for each tumor type. Here, we propose parallelized latent Dirichlet allocation (PLDA), a novel Bayesian model to simultaneously predict mutation signatures with all mutation catalogs. PLDA is an extended model of latent Dirichlet allocation (LDA), which is one of the methods used for signature prediction. It has parallelized hyperparameters of Dirichlet distributions for LDA, and they represent the sparsity of signature activities for each tumor type, thus facilitating simultaneous analyses. First, we conducted a simulation experiment to compare PLDA with previous methods (including SigProfiler and SignatureAnalyzer) using artificial data and confirmed that PLDA could predict signature structures as accurately as previous methods without searching for the optimal hyperparameters. Next, we applied PLDA to PCAWG (Pan-Cancer Analysis of Whole Genomes) mutation catalogs and obtained a signature set different from the one predicted by SigProfiler. Further, we have shown that the mutation spectrum represented by the predicted signature with PLDA provides a novel interpretability through post-analyses.


Subject(s)
Algorithms , Computer Simulation , Genome, Human , Mutation , Neoplasms/genetics , Neoplasms/pathology , Bayes Theorem , Humans
4.
Bioinformatics ; 35(22): 4543-4552, 2019 11 01.
Article in English | MEDLINE | ID: mdl-30993319

ABSTRACT

MOTIVATION: A cancer genome includes many mutations derived from various mutagens and mutational processes, leading to specific mutation patterns. It is known that each mutational process leads to characteristic mutations, and when a mutational process has preferences for mutations, this situation is called a 'mutation signature.' Identification of mutation signatures is an important task for elucidation of carcinogenic mechanisms. In previous studies, analyses with statistical approaches (e.g. non-negative matrix factorization and latent Dirichlet allocation) revealed a number of mutation signatures. Nonetheless, strictly speaking, these existing approaches employ an ad hoc method or incorrect approximation to estimate the number of mutation signatures, and the whole picture of mutation signatures is unclear. RESULTS: In this study, we present a novel method for estimating the number of mutation signatures-latent Dirichlet allocation with variational Bayes inference (VB-LDA)-where variational lower bounds are utilized for finding a plausible number of mutation patterns. In addition, we performed cluster analyses for estimated mutation signatures to extract novel mutation signatures that appear in multiple primary lesions. In a simulation with artificial data, we confirmed that our method estimated the correct number of mutation signatures. Furthermore, applying our method in combination with clustering procedures for real mutation data revealed many interesting mutation signatures that have not been previously reported. AVAILABILITY AND IMPLEMENTATION: All the predicted mutation signatures with clustering results are freely available at http://www.f.waseda.jp/mhamada/MS/index.html. All the C++ source code and python scripts utilized in this study can be downloaded on the Internet (https://github.com/qkirikigaku/MS_LDA). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Mutation , Software , Bayes Theorem , Cluster Analysis
5.
Biochem Biophys Res Commun ; 512(4): 641-646, 2019 05 14.
Article in English | MEDLINE | ID: mdl-30497775

ABSTRACT

Chemical safety screening requires the development of more efficient assays that do not involve testing in animals. In vitro cell-based assays are among the most appropriate alternatives to animal testing for screening of chemical toxicity. Most studies performed to date made use of mRNAs as biomarkers. Recent studies have however indicated the presence of many unannotated non-coding RNAs (ncRNAs) in the transcriptome that do appear to encode proteins. In the present study, we performed whole-transcriptome sequencing analysis (RNA-Seq) to identify novel RNA biomarkers, including ncRNAs, which showed marked responses to the toxicity of nine chemicals. Chemical safety screening was performed in cell-based assays using mouse embryonic stem cell (mESC)-derived neural cells. Marked responses in the expression of some ncRNAs to the chemical compounds were observed. The results of the present study suggested that ncRNAs may be useful in chemical safety screening as novel RNA biomarkers.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Neurons/drug effects , RNA/genetics , Toxicity Tests/methods , Transcriptome/drug effects , Animal Testing Alternatives/methods , Animals , Cells, Cultured , Chemical Safety , Gene Expression Profiling/methods , Mice , Mice, Inbred C57BL , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Neurons/cytology , Neurons/metabolism , Phenol/toxicity , RNA, Untranslated/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...