Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 7942, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38040724

ABSTRACT

Research aimed at identifying indicators of persistent abrupt shifts in ecological communities, a.k.a regime shifts, has led to the development of a suite of early warning signals (EWSs). As these often perform inaccurately when applied to real-world observational data, it remains unclear whether critical transitions are the dominant mechanism of regime shifts and, if so, which EWS methods can predict them. Here, using multi-trophic planktonic data on multiple lakes from around the world, we classify both lake dynamics and the reliability of classic and second generation EWSs methods to predict whole-ecosystem change. We find few instances of critical transitions, with different trophic levels often expressing different forms of abrupt change. The ability to predict this change is highly processing dependant, with most indicators not performing better than chance, multivariate EWSs being weakly superior to univariate, and a recent machine learning model performing poorly. Our results suggest that predictive ecology should start to move away from the concept of critical transitions, developing methods suitable for predicting resilience loss not limited to the strict bounds of bifurcation theory.


Subject(s)
Ecosystem , Lakes , Reproducibility of Results , Models, Biological , Ecology
2.
Water Res ; 245: 120639, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37774538

ABSTRACT

Eutrophication and harmful algal blooms have severe effects on water quality and biodiversity in lakes and reservoirs. Ecological regime shifts of phytoplankton blooms are generally thought to be driven by the rapidly rising nutrient use efficiency of bloom-forming species over short periods, and often exhibit nonlinear dynamics. Regime shifts of trophic state, eutrophication, stratification, and clear or turbid waters are well-studied topics in aquatic ecology. However, information on the prevalence of regime shifts in relationships between trophic states and phytoplankton resource transfer efficiencies in ecosystems is still lacking. Here, we provided a first insight into regime shifts in nitrogen use efficiency of phytoplankton along the trophic state gradient. We explored the regime shifts of phytoplankton resource use efficiency and detected the tipping points by combining four temporal or spatial datasets from tropical to temperate zones in Asia and Europe. We first observed significant abrupt transitions (abruptness > 1) in phytoplankton nitrogen use efficiency along the trophic state gradient. The tipping point values were lower in subtropical/tropical waterbodies (mesotrophic states; TSIc: around 50) than those in temperate zones (eutrophic states; TSIc: 60-70). The regime shifts significantly reduced the primary production transfer efficiency via zooplankton (from 0.15 ± 0.03 to 0.03 ± 0.01; mean ± standard error) in the aquatic food web. Nitrogen-fixing filamentous cyanobacteria can drive eutrophication under mesotrophic state. Our findings imply that the time-window of opportunity for harmful algae prevention and control in lakes and reservoirs is earlier in subtropical/tropical regions.

3.
Nature ; 619(7969): 317-322, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37438590

ABSTRACT

Plastic debris is thought to be widespread in freshwater ecosystems globally1. However, a lack of comprehensive and comparable data makes rigorous assessment of its distribution challenging2,3. Here we present a standardized cross-national survey that assesses the abundance and type of plastic debris (>250 µm) in freshwater ecosystems. We sample surface waters of 38 lakes and reservoirs, distributed across gradients of geographical position and limnological attributes, with the aim to identify factors associated with an increased observation of plastics. We find plastic debris in all studied lakes and reservoirs, suggesting that these ecosystems play a key role in the plastic-pollution cycle. Our results indicate that two types of lakes are particularly vulnerable to plastic contamination: lakes and reservoirs in densely populated and urbanized areas and large lakes and reservoirs with elevated deposition areas, long water-retention times and high levels of anthropogenic influence. Plastic concentrations vary widely among lakes; in the most polluted, concentrations reach or even exceed those reported in the subtropical oceanic gyres, marine areas collecting large amounts of debris4. Our findings highlight the importance of including lakes and reservoirs when addressing plastic pollution, in the context of pollution management and for the continued provision of lake ecosystem services.


Subject(s)
Lakes , Plastics , Water Pollution , Water Supply , Ecosystem , Lakes/chemistry , Plastics/analysis , Plastics/classification , Water Pollution/analysis , Water Pollution/statistics & numerical data , Surveys and Questionnaires , Urbanization , Human Activities
4.
Nat Commun ; 14(1): 3507, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37316479

ABSTRACT

Temperature and biodiversity changes occur in concert, but their joint effects on ecological stability of natural food webs are unknown. Here, we assess these relationships in 19 planktonic food webs. We estimate stability as structural stability (using the volume contraction rate) and temporal stability (using the temporal variation of species abundances). Warmer temperatures were associated with lower structural and temporal stability, while biodiversity had no consistent effects on either stability property. While species richness was associated with lower structural stability and higher temporal stability, Simpson diversity was associated with higher temporal stability. The responses of structural stability were linked to disproportionate contributions from two trophic groups (predators and consumers), while the responses of temporal stability were linked both to synchrony of all species within the food web and distinctive contributions from three trophic groups (predators, consumers, and producers). Our results suggest that, in natural ecosystems, warmer temperatures can erode ecosystem stability, while biodiversity changes may not have consistent effects.


Subject(s)
Ecosystem , Food Chain , Temperature , Biodiversity , Nutritional Status
5.
Sci Total Environ ; 881: 163097, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37011685

ABSTRACT

A better understanding of abrupt ecosystem changes is needed to improve prediction of future ecosystem states under climate change. Chronological analysis based on long-term monitoring data is an effective way to estimate the frequency and magnitude of abrupt ecosystem changes. In this study, we used abrupt-change detection to differentiate changes of algal community composition in two Japanese lakes and to identify the causes of long-term ecological transitions. Additionally, we focused on finding statistically significant relationships between abrupt changes to aid with factor analysis. To estimate the strengths of driver-response relationships underlying abrupt algal transitions, the timing of the algal transitions was compared to that of abrupt changes in climate and basin characteristics to identify any synchronicities between them. The timing of abrupt algal changes in the two study lakes corresponded most closely to that of heavy runoff events during the past 30-40 years. This strongly suggests that changes in the frequency of extreme events (e.g., heavy rain, prolonged drought) have a greater effect on lake chemistry and community composition than do shifts in the means of climate and basin factors. Our analysis of synchronicity (with a focus on time lags) could provide an easy method to identify better adaptative strategies for future climate change.


Subject(s)
Ecosystem , Lakes , Water Quality , Climate Change , Droughts
6.
J Environ Radioact ; 263: 107184, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37119681

ABSTRACT

Radiocesium (137Cs) contamination of the freshwater ecosystems adjacent to the Fukushima Daiichi Nuclear Power Plant (FDNPP) in Japan has persisted long after the accident that occurred at the facility in March 2011. It is necessary to elucidate the dynamics of 137Cs in various aquatic ecosystems to predict 137Cs concentrations in fish and manage freshwater fisheries in the vicinity of FDNPP. To these ends, we applied stable isotope analysis to evaluate changes in 137Cs levels through trophic positions and the relative importance of the 137Cs sources at the trophic bases of two rivers and two lakes in Fukushima. The δ15N analyses disclosed that 137Cs decreases from primary producers to fish consumers in the river food web and 137Cs increases among fish consumers with increasing trophic position in the lake food web. The δ13C analysis revealed that autochthonous 137Cs contributed to fish contamination. The periphyton-dependent and zooplankton-dependent fish had comparatively higher 137Cs concentrations in the rivers and lakes, respectively. Cesium-137 supply from the pelagic food web was observed to contribute to greater 137Cs levels in the fish consumers inhabiting the lakes. The results of this study show that stable isotope analysis may help clarify 137Cs dynamics in freshwater food webs and identify the important 137Cs sources in the food web. Identifying important 137Cs sources and trophic transfers depending on the ecosystem help guide regulatory and management frameworks to establish profitability of the food fish stocks there and maintain food security.


Subject(s)
Fukushima Nuclear Accident , Radiation Monitoring , Water Pollutants, Radioactive , Animals , Food Chain , Ecosystem , Lakes , Rivers , Water Pollutants, Radioactive/analysis , Cesium Radioisotopes/analysis , Fishes , Japan
7.
Ecol Lett ; 26(3): 470-481, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36707927

ABSTRACT

Chaotic dynamics appear to be prevalent in short-lived organisms including plankton and may limit long-term predictability. However, few studies have explored how dynamical stability varies through time, across space and at different taxonomic resolutions. Using plankton time series data from 17 lakes and 4 marine sites, we found seasonal patterns of local instability in many species, that short-term predictability was related to local instability, and that local instability occurred most often in the spring, associated with periods of high growth. Taxonomic aggregates were more stable and more predictable than finer groupings. Across sites, higher latitude locations had higher Lyapunov exponents and greater seasonality in local instability, but only at coarser taxonomic resolution. Overall, these results suggest that prediction accuracy, sensitivity to change and management efficacy may be greater at certain times of year and that prediction will be more feasible for taxonomic aggregates.


Subject(s)
Lakes , Plankton , Animals , Seasons , Time Factors , Phytoplankton , Zooplankton , Ecosystem
8.
Glob Chang Biol ; 29(3): 686-701, 2023 02.
Article in English | MEDLINE | ID: mdl-36370051

ABSTRACT

Managing ecosystems to effectively preserve function and services requires reliable tools that can infer changes in the stability and dynamics of a system. Conceptually, functional diversity (FD) appears as a sensitive and viable monitoring metric stemming from suggestions that FD is a universally important measure of biodiversity and has a mechanistic influence on ecological processes. It is however unclear whether changes in FD consistently occur prior to state responses or vice versa, with no current work on the temporal relationship between FD and state to support a transition towards trait-based indicators. There is consequently a knowledge gap regarding when functioning changes relative to biodiversity change and where FD change falls in that sequence. We therefore examine the lagged relationship between planktonic FD and abundance-based metrics of system state (e.g. biomass) across five highly monitored lake communities using both correlation and cutting edge non-linear empirical dynamic modelling approaches. Overall, phytoplankton and zooplankton FD display synchrony with lake state but each lake is idiosyncratic in the strength of relationship. It is therefore unlikely that changes in plankton FD are identifiable before changes in more easily collected abundance metrics. These results highlight the power of empirical dynamic modelling in disentangling time lagged relationships in complex multivariate ecosystems, but suggest that FD cannot be generically viable as an early indicator. Individual lakes therefore require consideration of their specific context and any interpretation of FD across systems requires caution. However, FD still retains value as an alternative state measure or a trait representation of biodiversity when considered at the system level.


Subject(s)
Ecosystem , Plankton , Lakes , Biodiversity , Biomass , Phytoplankton
10.
Proc Natl Acad Sci U S A ; 119(42): e2204405119, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36215500

ABSTRACT

Ecosystems are complex systems of various physical, biological, and chemical processes. Since ecosystem dynamics are composed of a mixture of different levels of stochasticity and nonlinearity, handling these data is a challenge for existing methods of time series-based causal inferences. Here, we show that, by harnessing contemporary machine learning approaches, the concept of Granger causality can be effectively extended to the analysis of complex ecosystem time series and bridge the gap between dynamical and statistical approaches. The central idea is to use an ensemble of fast and highly predictive artificial neural networks to select a minimal set of variables that maximizes the prediction of a given variable. It enables decomposition of the relationship among variables through quantifying the contribution of an individual variable to the overall predictive performance. We show how our approach, EcohNet, can improve interaction network inference for a mesocosm experiment and simulated ecosystems. The application of the method to a long-term lake monitoring dataset yielded interpretable results on the drivers causing cyanobacteria blooms, which is a serious threat to ecological integrity and ecosystem services. Since performance of EcohNet is enhanced by its predictive capabilities, it also provides an optimized forecasting of overall components in ecosystems. EcohNet could be used to analyze complex and hybrid multivariate time series in many scientific areas not limited to ecosystems.


Subject(s)
Ecosystem , Neural Networks, Computer , Causality , Lakes , Machine Learning
12.
Sci Data ; 9(1): 318, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35710905

ABSTRACT

In recent decades, lakes have experienced unprecedented ice loss with widespread ramifications for winter ecological processes. The rapid loss of ice, resurgence of winter biology, and proliferation of remote sensing technologies, presents a unique opportunity to integrate disciplines to further understand the broad spatial and temporal patterns in ice loss and its consequences. Here, we summarize ice phenology records for 78 lakes in 12 countries across North America, Europe, and Asia to permit the inclusion and harmonization of in situ ice phenology observations in future interdisciplinary studies. These ice records represent some of the longest climate observations directly collected by people. We highlight the importance of applying the same definition of ice-on and ice-off within a lake across the time-series, regardless of how the ice is observed, to broaden our understanding of ice loss across vast spatial and temporal scales.

13.
Sci Total Environ ; 838(Pt 2): 156088, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35605866

ABSTRACT

Although long-term ecosystem monitoring provides essential knowledge for practicing ecosystem management, analyses of the causal effects of ecological impacts from large-scale observational data are still in an early stage of development. We used causal impact analysis (CIA)-a synthetic control method that enables estimation of causal impacts from unrepeated, long-term observational data-to evaluate the causal impacts of extreme water-level drawdowns during summer on subsequent water quality. We used more than 100 years of transparency and water level monitoring data from Lake Biwa, Japan. The results of the CIA showed that the most extreme drawdown in recorded history, which occurred in 1994, had a significant positive effect on transparency (a maximum increase of 1.75 m on average over the following year) in the north basin of the lake. The extreme drawdown in 1939 was also shown to be a trigger for an increase in transparency in the north basin, whereas that in 1984 had no significant effects on transparency. In the south basin, contrary to the pattern in the north basin, the extreme drawdown had a significant negative effect on transparency shortly after the extreme drawdown. These different impacts of the extreme drawdowns were considered to be affected by the timing and magnitude of the extreme drawdowns and the depths of the basins. Our approach of inferring the causal impacts of past events on ecosystems will be helpful in implementing water-level management for ecosystem management and improving water quality in lakes.


Subject(s)
Environmental Monitoring , Lakes , Water Quality , Ecosystem , Environmental Monitoring/methods , Japan , Seasons
14.
Nat Commun ; 13(1): 1140, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35241667

ABSTRACT

Untangling causal links and feedbacks among biodiversity, ecosystem functioning, and environmental factors is challenging due to their complex and context-dependent interactions (e.g., a nutrient-dependent relationship between diversity and biomass). Consequently, studies that only consider separable, unidirectional effects can produce divergent conclusions and equivocal ecological implications. To address this complexity, we use empirical dynamic modeling to assemble causal networks for 19 natural aquatic ecosystems (N24◦~N58◦) and quantified strengths of feedbacks among phytoplankton diversity, phytoplankton biomass, and environmental factors. Through a cross-system comparison, we identify macroecological patterns; in more diverse, oligotrophic ecosystems, biodiversity effects are more important than environmental effects (nutrients and temperature) as drivers of biomass. Furthermore, feedback strengths vary with productivity. In warm, productive systems, strong nitrate-mediated feedbacks usually prevail, whereas there are strong, phosphate-mediated feedbacks in cold, less productive systems. Our findings, based on recovered feedbacks, highlight the importance of a network view in future ecosystem management.


Subject(s)
Ecosystem , Phytoplankton , Biodiversity , Biomass , Temperature
15.
Nature ; 594(7861): 66-70, 2021 06.
Article in English | MEDLINE | ID: mdl-34079137

ABSTRACT

The concentration of dissolved oxygen in aquatic systems helps to regulate biodiversity1,2, nutrient biogeochemistry3, greenhouse gas emissions4, and the quality of drinking water5. The long-term declines in dissolved oxygen concentrations in coastal and ocean waters have been linked to climate warming and human activity6,7, but little is known about the changes in dissolved oxygen concentrations in lakes. Although the solubility of dissolved oxygen decreases with increasing water temperatures, long-term lake trajectories are difficult to predict. Oxygen losses in warming lakes may be amplified by enhanced decomposition and stronger thermal stratification8,9 or oxygen may increase as a result of enhanced primary production10. Here we analyse a combined total of 45,148 dissolved oxygen and temperature profiles and calculate trends for 393 temperate lakes that span 1941 to 2017. We find that a decline in dissolved oxygen is widespread in surface and deep-water habitats. The decline in surface waters is primarily associated with reduced solubility under warmer water temperatures, although dissolved oxygen in surface waters increased in a subset of highly productive warming lakes, probably owing to increasing production of phytoplankton. By contrast, the decline in deep waters is associated with stronger thermal stratification and loss of water clarity, but not with changes in gas solubility. Our results suggest that climate change and declining water clarity have altered the physical and chemical environment of lakes. Declines in dissolved oxygen in freshwater are 2.75 to 9.3 times greater than observed in the world's oceans6,7 and could threaten essential lake ecosystem services2,3,5,11.


Subject(s)
Lakes/chemistry , Oxygen/analysis , Oxygen/metabolism , Temperature , Animals , Climate Change , Ecosystem , Oceans and Seas , Oxygen/chemistry , Phytoplankton/metabolism , Solubility , Time Factors
16.
Sci Total Environ ; 777: 145947, 2021 Jul 10.
Article in English | MEDLINE | ID: mdl-33676206

ABSTRACT

Invasive alien fishes have detrimental ecological effects on aquatic ecosystems and the services they provide. Impacts from an invasion in a single ecosystem may differ across space and time due to variability in prey availability and environmental conditions. We hypothesize that such variability can be profound, even within a single ecosystem. Stable isotopes analysis (SIA) is commonly used to quantitatively describe the trophic niche of a species. However, spatial and temporal variability in occupied niches are often not incorporated into management strategies and policy options. Here, we used long-term monitoring data to investigate the invasion stage as well as SIA to analyse the trophic niche of the invasive channel catfish Ictalurus punctatus in Lake Kasumigaura (Japan), a long-term ecological research site (LTER), across distant sampling sites and years. We found a significant spatio-temporal variability in relative growth and isotopic niche occupation. Moreover, we defined a new index, the Isotopic Plasticity Index (IPI), which is the ratio between core and total home range of an occupied isotopic niche, to be used as a proxy for the trophic niche stretch or density. We found that this IPI varied considerably, confirming the spatio-temporal variability in trophic niches, suggesting the IPI to be an adequate new isotopic metric. Our results further provide evidence for the existence of variation across invaded landscapes, implying heterogeneous impacts on recipient native communities. Therefore, our work emphasizes the importance of exploring trophic plasticity in feeding ecology and growth as such information enables a better understanding of impacts and can inform the design and implementation of effective management responses.


Subject(s)
Ecosystem , Fishes , Animals , Food Chain , Japan , Lakes , Nitrogen Isotopes/analysis
17.
Water Res ; 190: 116715, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33310445

ABSTRACT

Lake eutrophication is a pervasive problem globally, particularly serious in agricultural and densely populated areas. Whenever nutrients nitrogen and phosphorus do not limit phytoplankton growth directly, high growth rates will rapidly lead to biomass increases causing self-shading and light-limitation, and eventually CO2 depletion. The paradigm of phytoplankton limitation by nutrients and light is so pervasively established, that the lack of nutrient limitation is ordinarily interpreted as sufficient evidence for the condition of light limitation, without considering the possibility of limitation by inorganic carbon. Here, we firstly evaluated how frequently CO2 undersaturation occurs in a set of eutrophic lakes in the Pampa plains. Our results confirm that conditions of CO2 undersaturation develop much more frequently (yearly 34%, summer 44%) in these agriculturally impacted lakes than in deep, temperate lakes in forested watersheds. Secondly, we used Generalized Additive Models to fit trends in CO2 concentration considering three drivers: total incident irradiance, chlorophyll a concentration, and lake depth; in eight multi-year datasets from eutrophic lakes from Europe, North and South America, Asia and New Zealand. CO2 depletion was more often observed at high irradiance levels, and shallow water. CO2 depletion also occurred at high chlorophyll concentration. Finally, we identified occurrences of light- and carbon-limitation at the whole-lake scale. The different responses of chlorophyll a and CO2 allowed us to develop criteria for detecting conditions of CO2 limitation. For the first time, we provided whole-lake evidence of carbon limitation of phytoplankton biomass. CO2 increases and eutrophication represent two major and converging environmental problems that have additive and contrasting effects, promoting phytoplankton, and also leading to carbon depletion. Their interactions deserve further exploration and imaginative approaches to deal with their effects.


Subject(s)
Lakes , Phytoplankton , Biomass , Carbon , Carbon Dioxide , China , Chlorophyll A , Europe , Eutrophication , New Zealand , Nitrogen/analysis , Phosphorus/analysis
18.
Sci Total Environ ; 761: 143257, 2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33246721

ABSTRACT

Remobilization of radiocesium from anoxic sediments can be an important mechanism responsible for long-term contaminations of lakes. However, it is unclear whether such remobilization occurs in shallow lakes, where concentrations of dissolved oxygen in the hypolimnion (bottom DO) change temporally in response to meteorological conditions, and whether remobilized radiocesium influences the activity in fish. We examined the seasonal dynamics of the activities of dissolved 137Cs and 137Cs in fish (pond smelt and crucian carp) from Lake Kasumigaura, a shallow, hypereutrophic lake, five years after the Fukushima Daiichi Nuclear Power Plant accident. The activities of both dissolved 137Cs and 137Cs in fish declined during that time, but the declines showed a clear seasonal pattern that included a summer peak of 137Cs activity. The activity of dissolved 137Cs increased when the bottom DO concentration decreased, and a nonlinear causality test revealed significant causal forcing of dissolved 137Cs activity by bottom DO. The fact that NH4-N concentrations in bottom waters were higher in the summer suggested that remobilization of 137Cs from sediments could result from highly selective ion-exchange with NH4-N. Despite the shallow depth of Lake Kasumigaura, winds had little influence bottom DO concentrations or dissolved 137Cs activities. The fact that seasonal means of 137Cs activities in pond smelt and crucian carp were positively correlated with the seasonal means of dissolved 137Cs activities suggested that remobilized 137Cs may have influenced the seasonal dynamics of radiocesium in fish through food-chain transfer, but higher feeding rates in warm water could may have also contributed to the seasonal dynamics of 137Cs activity in fish. Our findings suggest that in shallow lakes, intermittent but repeated hypoxic events may enhance remobilization of radiocesium from sediments, and remobilized radiocesium may contributed to long-term retention of radiocesium in aquatic organisms.


Subject(s)
Fukushima Nuclear Accident , Radiation Monitoring , Water Pollutants, Radioactive , Animals , Cesium Radioisotopes/analysis , Japan , Lakes , Oxygen , Seasons , Water , Water Pollutants, Radioactive/analysis
19.
Glob Chang Biol ; 26(11): 6413-6423, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32869344

ABSTRACT

Understanding how ecosystems will respond to climate changes requires unravelling the network of functional responses and feedbacks among biodiversity, physicochemical environments, and productivity. These ecosystem components not only change over time but also interact with each other. Therefore, investigation of individual relationships may give limited insights into their interdependencies and limit ability to predict future ecosystem states. We address this problem by analyzing long-term (16-39 years) time series data from 10 aquatic ecosystems and using convergent cross mapping (CCM) to quantify the causal networks linking phytoplankton species richness, biomass, and physicochemical factors. We determined that individual quantities (e.g., total species richness or nutrients) were not significant predictors of ecosystem stability (quantified as long-term fluctuation of phytoplankton biomass); rather, the integrated causal pathway in the ecosystem network, composed of the interactions among species richness, nutrient cycling, and phytoplankton biomass, was the best predictor of stability. Furthermore, systems that experienced stronger warming over time had both weakened causal interactions and larger fluctuations. Thus, rather than thinking in terms of separate factors, a more holistic network view, that causally links species richness and the other ecosystem components, is required to understand and predict climate impacts on the temporal stability of aquatic ecosystems.


Subject(s)
Biodiversity , Ecosystem , Biomass , Climate Change , Phytoplankton
20.
Ecol Lett ; 23(8): 1287-1297, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32476249

ABSTRACT

Experiments have revealed much about top-down and bottom-up control in ecosystems, but manipulative experiments are limited in spatial and temporal scale. To obtain a more nuanced understanding of trophic control over large scales, we explored long-term time-series data from 13 globally distributed lakes and used empirical dynamic modelling to quantify interaction strengths between zooplankton and phytoplankton over time within and across lakes. Across all lakes, top-down effects were associated with nutrients, switching from negative in mesotrophic lakes to positive in oligotrophic lakes. This result suggests that zooplankton nutrient recycling exceeds grazing pressure in nutrient-limited systems. Within individual lakes, results were consistent with a 'seasonal reset' hypothesis in which top-down and bottom-up interactions varied seasonally and were both strongest at the beginning of the growing season. Thus, trophic control is not static, but varies with abiotic conditions - dynamics that only become evident when observing changes over large spatial and temporal scales.


Subject(s)
Ecosystem , Lakes , Animals , Nutrients , Phytoplankton , Seasons , Zooplankton
SELECTION OF CITATIONS
SEARCH DETAIL
...