Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 186(25): 5517-5535.e24, 2023 12 07.
Article in English | MEDLINE | ID: mdl-37992713

ABSTRACT

Transfer RNA (tRNA) modifications are critical for protein synthesis. Queuosine (Q), a 7-deaza-guanosine derivative, is present in tRNA anticodons. In vertebrate tRNAs for Tyr and Asp, Q is further glycosylated with galactose and mannose to generate galQ and manQ, respectively. However, biogenesis and physiological relevance of Q-glycosylation remain poorly understood. Here, we biochemically identified two RNA glycosylases, QTGAL and QTMAN, and successfully reconstituted Q-glycosylation of tRNAs using nucleotide diphosphate sugars. Ribosome profiling of knockout cells revealed that Q-glycosylation slowed down elongation at cognate codons, UAC and GAC (GAU), respectively. We also found that galactosylation of Q suppresses stop codon readthrough. Moreover, protein aggregates increased in cells lacking Q-glycosylation, indicating that Q-glycosylation contributes to proteostasis. Cryo-EM of human ribosome-tRNA complex revealed the molecular basis of codon recognition regulated by Q-glycosylations. Furthermore, zebrafish qtgal and qtman knockout lines displayed shortened body length, implying that Q-glycosylation is required for post-embryonic growth in vertebrates.


Subject(s)
RNA, Transfer , Animals , Humans , Rats , Anticodon , Cell Line , Codon , Glycosylation , Nucleoside Q/chemistry , Nucleoside Q/genetics , Nucleoside Q/metabolism , RNA, Transfer/chemistry , RNA, Transfer/metabolism , Swine , Zebrafish/metabolism , Nucleic Acid Conformation
2.
Nat Commun ; 11(1): 4269, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32859890

ABSTRACT

Mitochondria generate most cellular energy via oxidative phosphorylation. Twenty-two species of mitochondrial (mt-)tRNAs encoded in mtDNA translate essential subunits of the respiratory chain complexes. mt-tRNAs contain post-transcriptional modifications introduced by nuclear-encoded tRNA-modifying enzymes. They are required for deciphering genetic code accurately, as well as stabilizing tRNA. Loss of tRNA modifications frequently results in severe pathological consequences. Here, we perform a comprehensive analysis of post-transcriptional modifications of all human mt-tRNAs, including 14 previously-uncharacterized species. In total, we find 18 kinds of RNA modifications at 137 positions (8.7% in 1575 nucleobases) in 22 species of human mt-tRNAs. An up-to-date list of 34 genes responsible for mt-tRNA modifications are provided. We identify two genes required for queuosine (Q) formation in mt-tRNAs. Our results provide insight into the molecular mechanisms underlying the decoding system and could help to elucidate the molecular pathogenesis of human mitochondrial diseases caused by aberrant tRNA modifications.


Subject(s)
RNA Processing, Post-Transcriptional , RNA, Mitochondrial/chemistry , RNA, Transfer/chemistry , Female , Genetic Code , HEK293 Cells , HeLa Cells , Humans , Mass Spectrometry , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Diseases/genetics , Mitochondrial Diseases/pathology , Molecular Structure , Nucleoside Q/biosynthesis , Nucleoside Q/chemistry , Oxidative Phosphorylation , Placenta , Pregnancy , RNA, Mitochondrial/isolation & purification , RNA, Mitochondrial/metabolism , RNA, Transfer/isolation & purification , RNA, Transfer/metabolism , RNA-Seq
SELECTION OF CITATIONS
SEARCH DETAIL
...