Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 16(45): 10260-10267, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33237109

ABSTRACT

Mixtures of water and PEG exhibit a well known eutectic phase diagram. While the thermodynamic properties like eutectic and liquidus temperatures as well as the eutectic concentration are intensely investigated almost nothing is known about the structural properties of water and PEG in the different regions of the phase diagram. Therefore, we report on a combined DSC, SAXS and WAXS study over the full range of polymer water compositions in order to elucidate the crystalline and semi-crystalline structure. Throughout the whole phase diagram no signatures of a mixed-crystalline phase of PEG and water can be found. Below the eutectic temperature, both components demix microscopically into hexagonal ice and crystalline PEG with its well known crystalline structure. In the region between eutectic and liquidus temperature, the solid component is composed of a single phase of either pure semi-crystalline PEG (PEG rich side of the phase diagram) or pure ice (water rich side). The semi-crystalline structure of PEG, in contrast, is changed by the presence of water. Its long spacing dac increases due to the incorporation of water molecules in the amorphous regions, while the formation of crystalline regions seems to be enhanced, resulting in an almost unaffected crystallinity.

2.
Soft Matter ; 15(20): 4192-4199, 2019 May 22.
Article in English | MEDLINE | ID: mdl-31065653

ABSTRACT

Elastin-like peptides are biopolymers that display LCST behaviour in solution quite similar to other synthetic polymers like polyethylene oxide. Here we study the structure of the peptide GVG(VPGVG)3 in a temperature range of 25 °C to 70 °C with small angle neutron scattering. The LCST for this peptide is outside the experimental range of temperatures. Molecular conformation is well described within the model of a random coil but increasing temperature leads to significant changes. The peptide displays a combination of conformational change and aggregation that show up in the scattering at low and intermediate scattering vector q. The aggregate size is determined from an integral measure of the scattered intensity. It increases with temperature and concentration. For low concentration we find a size variation with temperature that may be related to the collapse of conformation at the inverse temperature transition (ITT).


Subject(s)
Elastin/chemistry , Peptides, Cyclic/chemistry , Hydrogen Bonding , Molecular Weight , Protein Aggregates , Protein Conformation , Temperature , Transition Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...