Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Prot ; 81(12): 1941-1949, 2018 12.
Article in English | MEDLINE | ID: mdl-30452292

ABSTRACT

Rapid detection of bacterial contamination in the food supply chain is critically important for food safety monitoring. Reliable extraction and concentration of bacteria from complex matrices is required to achieve high detection sensitivity, especially in situations of low contamination and infective dose. Carbohydrate ligands that attach to microbial cell-surface epitopes are promising economical and biocompatible substitutes for cell-targeting ligands and antibodies. Two different carbohydrate ligands immobilized onto magnetic nanoparticles (MNPs) were easily suspended in liquid food (milk) and allowed expedient extraction of microbes within minutes, without the need for centrifugation or loss in capture capacity. In this pilot study, 25-mL samples of undiluted milk were spiked with 5 mg of MNPs and artificially contaminated with bacteria at 3 to 5 log CFU/mL. MNPs and bacteria formed MNP-cell complexes, which were rapidly separated from the milk matrix with a simple magnet to allow supernatant removal. MNP-cell complexes were then concentrated by resuspension in 1 mL of fresh milk and plated per Bacteriological Analytical Manual procedures. Capture was carried out in vitamin D, 2% reduced fat, and fat-free milk spiked with Salmonella Enteritidis, Escherichia coli O157:H7, and Bacillus cereus for a combined total of 18 experiments (three replicates each). An additional eight experiments were conducted to investigate the effect of competitive bacteria on capture. All experiments were carried out over several months to account for environmental variations. Capture efficiency, on a log basis, for all combinations of milk and bacteria was 73 to 90%. Long-term exposure of the MNPs to milk did not markedly affect capture efficiency. These carbohydrate-functionalized MNPs have potential as nonspecific receptors for rapid extraction of bacteria from complex liquids, opening the door to discovery of biocompatible ligands that can reliably target pathogens in our food.


Subject(s)
Food Contamination/analysis , Food Microbiology , Magnetite Nanoparticles , Milk , Animals , Carbohydrates , Centrifugation , Colony Count, Microbial , Ligands , Milk/microbiology , Pilot Projects
2.
Biosens Bioelectron ; 117: 781-793, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30029200

ABSTRACT

Emerging nano-biosensing with suspended MNP microbial extraction and EANP labeling may ensure a secure microbe-free food supply, as rapid response detection of microbial contamination is of utmost importance. Many biosensor designs have been proposed over the past two decades, covering a broad range of binding ligands, signal amplification, and detection mechanisms. These designs may consist of self-contained test strips developed from the base up with complicated nanoparticle chemistry and intricate ligand immobilization. Other methods use multiple step-wise additions, many based upon ELISA 96-well plate technology with fluorescent detection. In addition, many biosensors use expensive antibody receptors or DNA ligands. But many of these proposed designs are impracticable for most applications or users, since they don't FIRST address the broad goals of any biosensor: Field operability, Inexpensive, with Real-time detection that is both Sensitive and Specific to target, while being as Trouble-free as possible. Described in this review are applications that utilize versatile magnetic nanoparticles (MNP) extraction, electrically active nanoparticles (EANP) labeling, and carbohydrate-based ligand chemistry. MNP provide rapid pathogen extraction from liquid samples. EANP labeling improves signal amplification and expands signaling options to include optical and electrical detection. Carbohydrate ligands are inexpensive, robust structures that are increasingly synthesized for higher selectivity. Used in conjunction with optical or electrical detection of gold nanoparticles (AuNP), carbohydrate-functionalized MNP-cell-AuNP nano-biosensing advances the goal of being the FIRST biosensor of choice in detecting microbial pathogens throughout our food supply chain.


Subject(s)
Biosensing Techniques/methods , Electrochemical Techniques , Food Microbiology/methods , Metal Nanoparticles/chemistry , Bacteria/isolation & purification , Gold/chemistry , Magnetics
3.
Biosens Bioelectron ; 111: 152-158, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-29677636

ABSTRACT

Rapid detection techniques of pathogenic bacteria in the liquid food supply chain are of significant research interest due to their pivotal role in preventing foodborne outbreaks, and in maintaining high standards of public health and safety. Milk and dairy products are of particular interest due to their widespread consumption across the globe. In this paper, a biosensor for detecting pathogenic bacteria in milk using dextrin-capped gold nanoparticles (d-AuNP) as labels decoded at microwave frequencies is presented. The SPEL (sensing pathogens electrically in liquids) biosensor consists of a 3D printed vial and uses an RF reader and an RFID (radio-frequency identification) compatible Split Ring Resonator (SRR) based tag. The SPEL biosensor is capable of detecting bacteria at 5 log CFU/mL within 75 min, with the possibility of testing multiple concurrent samples. Detection is based on impedance loading of SRR by d-AuNP bound to pathogenic bacteria. Spectrophotometry, along with carbohydrate-functionalized magnetic nanoparticle (MNP) cell capture, is used to verify the sensitivity of the SPEL biosensor with respect to d-AuNP presence. The proof-of-concept device, along with challenges and opportunities for commercialization, are also outlined.


Subject(s)
Biosensing Techniques/methods , Escherichia coli/isolation & purification , Food Analysis/methods , Food Contamination/analysis , Gold/chemistry , Metal Nanoparticles/chemistry , Milk/microbiology , Radio Frequency Identification Device/methods , Animals , Biosensing Techniques/instrumentation , Cattle , Equipment Design , Escherichia coli Infections/microbiology , Food Analysis/instrumentation , Food Microbiology , Food Supply , Microwaves
SELECTION OF CITATIONS
SEARCH DETAIL
...