Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38712203

ABSTRACT

The ocular surface is a mucosal barrier tissue colonized by commensal microbes, which tune local immunity by eliciting IL-17 from conjunctival γδ T cells to prevent pathogenic infection. The commensal Corynebacterium mastitidis (C. mast) elicits protective IL-17 responses from conjunctival Vγ4 T cells through a combination of γδ TCR ligation and IL-1 signaling. Here, we identify Vγ6 T cells as a major C. mast-responsive subset in the conjunctiva and uncover its unique activation requirements. We demonstrate that Vγ6 cells require not only extrinsic (via dendritic cells) but also intrinsic TLR2 stimulation for optimal IL-17A response. Mechanistically, intrinsic TLR2 signaling was associated with epigenetic changes and enhanced expression of genes responsible for metabolic shift to fatty acid oxidation to support Il17a transcription. We identify one key transcription factor, IκBζ, which is upregulated by TLR2 stimulation and is essential for this program. Our study highlights the importance of intrinsic TLR2 signaling in driving metabolic reprogramming and production of IL-17A in microbiome-specific mucosal γδ T cells.

2.
Ann Rheum Dis ; 81(10): 1453-1464, 2022 10.
Article in English | MEDLINE | ID: mdl-35868845

ABSTRACT

OBJECTIVES: To test the hypothesis that ROSAH (retinal dystrophy, optic nerve oedema, splenomegaly, anhidrosis and headache) syndrome, caused by dominant mutation in ALPK1, is an autoinflammatory disease. METHODS: This cohort study systematically evaluated 27 patients with ROSAH syndrome for inflammatory features and investigated the effect of ALPK1 mutations on immune signalling. Clinical, immunologic and radiographical examinations were performed, and 10 patients were empirically initiated on anticytokine therapy and monitored. Exome sequencing was used to identify a new pathogenic variant. Cytokine profiling, transcriptomics, immunoblotting and knock-in mice were used to assess the impact of ALPK1 mutations on protein function and immune signalling. RESULTS: The majority of the cohort carried the p.Thr237Met mutation but we also identified a new ROSAH-associated mutation, p.Tyr254Cys.Nearly all patients exhibited at least one feature consistent with inflammation including recurrent fever, headaches with meningeal enhancement and premature basal ganglia/brainstem mineralisation on MRI, deforming arthritis and AA amyloidosis. However, there was significant phenotypic variation, even within families and some adults lacked functional visual deficits. While anti-TNF and anti-IL-1 therapies suppressed systemic inflammation and improved quality of life, anti-IL-6 (tocilizumab) was the only anticytokine therapy that improved intraocular inflammation (two of two patients).Patients' primary samples and in vitro assays with mutated ALPK1 constructs showed immune activation with increased NF-κB signalling, STAT1 phosphorylation and interferon gene expression signature. Knock-in mice with the Alpk1 T237M mutation exhibited subclinical inflammation.Clinical features not conventionally attributed to inflammation were also common in the cohort and included short dental roots, enamel defects and decreased salivary flow. CONCLUSION: ROSAH syndrome is an autoinflammatory disease caused by gain-of-function mutations in ALPK1 and some features of disease are amenable to immunomodulatory therapy.


Subject(s)
Hereditary Autoinflammatory Diseases , NF-kappa B , Protein Kinases/genetics , Amyloidosis , Animals , Cohort Studies , Gain of Function Mutation , Hereditary Autoinflammatory Diseases/genetics , Humans , Inflammation/genetics , Mice , Mutation , NF-kappa B/genetics , NF-kappa B/metabolism , Protein Kinases/metabolism , Quality of Life , Serum Amyloid A Protein , Syndrome , Tumor Necrosis Factor Inhibitors
3.
FASEB J ; 36(1): e21995, 2022 01.
Article in English | MEDLINE | ID: mdl-34874579

ABSTRACT

While the eye is considered an immune privileged site, its privilege is abrogated when immune cells are recruited from the surrounding vasculature in response to trauma, infection, aging, and autoimmune diseases like uveitis. Here, we investigate whether in uveitis immune cells become associated with the lens capsule and compromise its privilege in studies of C57BL/6J mice with experimental autoimmune uveitis. These studies show that at D14, the peak of uveitis in these mice, T cells, macrophages, and Ly6G/Ly6C+ immune cells associate with the lens basement membrane capsule, burrow into the capsule matrix, and remain integrated with the capsule as immune resolution is occurring at D26. 3D surface rendering image analytics of confocal z-stacks and scanning electron microscopy imaging of the lens surface show the degradation of the lens capsule as these lens-associated immune cells integrate with and invade the lens capsule, with a subset infiltrating both epithelial and fiber cell regions of lens tissue, abrogating its immune privilege. Those immune cells that remain on the surface often become entwined with a fibrillar net-like structure. Immune cell invasion of the lens capsule in uveitis has not been described previously and may play a role in induction of lens and other eye pathologies associated with autoimmunity.


Subject(s)
Autoimmune Diseases/immunology , Cell Movement/immunology , Extracellular Matrix/immunology , Lens, Crystalline/immunology , Macrophages/immunology , Uveitis/immunology , Animals , Autoimmune Diseases/pathology , Lens, Crystalline/pathology , Macrophages/pathology , Mice , Uveitis/pathology
4.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Article in English | MEDLINE | ID: mdl-34782464

ABSTRACT

Regulatory B cells (Breg cells) that secrete IL-10 or IL-35 (i35-Breg) play key roles in regulating immunity in tumor microenvironment or during autoimmune and infectious diseases. Thus, loss of Breg function is implicated in development of autoimmune diseases while aberrant elevation of Breg prevents sterilizing immunity, exacerbates infectious diseases, and promotes cancer metastasis. Breg cells identified thus far are largely antigen-specific and derive mainly from B2-lymphocyte lineage. Here, we describe an innate-like IL-27-producing natural regulatory B-1a cell (i27-Breg) in peritoneal cavity and human umbilical cord blood. i27-Bregs accumulate in CNS and lymphoid tissues during neuroinflammation and confers protection against CNS autoimmune disease. i27-Breg immunotherapy ameliorated encephalomyelitis and uveitis through up-regulation of inhibitory receptors (Lag3, PD-1), suppression of Th17/Th1 responses, and propagating inhibitory signals that convert conventional B cells to regulatory lymphocytes that secrete IL-10 and/or IL-35 in eye, brain, or spinal cord. Furthermore, i27-Breg proliferates in vivo and sustains IL-27 secretion in CNS and lymphoid tissues, a therapeutic advantage over administering biologics (IL-10, IL-35) that are rapidly cleared in vivo. Mutant mice lacking irf4 in B cells exhibit exaggerated increase of i27-Bregs with few i35-Bregs, while mice with loss of irf8 in B cells have abundance of i35-Bregs but defective in generating i27-Bregs, identifying IRF8/BATF and IRF4/BATF axis in skewing B cell differentiation toward i27-Breg and i35-Breg developmental programs, respectively. Consistent with its developmental origin, disease suppression by innate i27-Bregs is neither antigen-specific nor disease-specific, suggesting that i27-Breg would be effective immunotherapy for a wide spectrum of autoimmune diseases.


Subject(s)
Autoimmune Diseases/immunology , Central Nervous System Diseases/immunology , Interleukin-27/metabolism , Neuroinflammatory Diseases/immunology , Animals , B-Lymphocytes, Regulatory/immunology , Cell Differentiation , Encephalitis , Interferon Regulatory Factors , Interleukin-10 , Mice , Uveitis/immunology
5.
Nat Commun ; 11(1): 5406, 2020 10 26.
Article in English | MEDLINE | ID: mdl-33106495

ABSTRACT

Mutations in nucleotide-binding oligomerization domain-containing protein 2 (NOD2) cause Blau syndrome, an inflammatory disorder characterized by uveitis. The antimicrobial functions of Nod2 are well-established, yet the cellular mechanisms by which dysregulated Nod2 causes uveitis remain unknown. Here, we report a non-conventional, T cell-intrinsic function for Nod2 in suppression of Th17 immunity and experimental uveitis. Reconstitution of lymphopenic hosts with Nod2-/- CD4+ T cells or retina-specific autoreactive CD4+ T cells lacking Nod2 reveals a T cell-autonomous, Rip2-independent mechanism for Nod2 in uveitis. In naive animals, Nod2 operates downstream of TCR ligation to suppress activation of memory CD4+ T cells that associate with an autoreactive-like profile involving IL-17 and Ccr7. Interestingly, CD4+ T cells from two Blau syndrome patients show elevated IL-17 and increased CCR7. Our data define Nod2 as a T cell-intrinsic rheostat of Th17 immunity, and open new avenues for T cell-based therapies for Nod2-associated disorders such as Blau syndrome.


Subject(s)
Nod2 Signaling Adaptor Protein/immunology , Th17 Cells/immunology , Uveitis/immunology , Uveitis/prevention & control , Animals , Arthritis/genetics , Arthritis/immunology , CD4-Positive T-Lymphocytes/immunology , Female , Humans , Interleukin-17/genetics , Interleukin-17/immunology , Male , Mice , Mice, Inbred C57BL , Nod2 Signaling Adaptor Protein/genetics , Receptors, CCR7/genetics , Receptors, CCR7/immunology , Sarcoidosis , Synovitis/genetics , Synovitis/immunology , Uveitis/genetics
6.
Immunity ; 53(2): 384-397.e5, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32673565

ABSTRACT

Dysregulated Th17 cell responses underlie multiple inflammatory and autoimmune diseases, including autoimmune uveitis and its animal model, EAU. However, clinical trials targeting IL-17A in uveitis were not successful. Here, we report that Th17 cells were regulated by their own signature cytokine, IL-17A. Loss of IL-17A in autopathogenic Th17 cells did not reduce their pathogenicity and instead elevated their expression of the Th17 cytokines GM-CSF and IL-17F. Mechanistic in vitro studies revealed a Th17 cell-intrinsic autocrine loop triggered by binding of IL-17A to its receptor, leading to activation of the transcription factor NF-κB and induction of IL-24, which repressed the Th17 cytokine program. In vivo, IL-24 treatment ameliorated Th17-induced EAU, whereas silencing of IL-24 in Th17 cells enhanced disease. This regulatory pathway also operated in human Th17 cells. Thus, IL-17A limits pathogenicity of Th17 cells by inducing IL-24. These findings may explain the disappointing therapeutic effect of targeting IL-17A in uveitis.


Subject(s)
Cytokines/metabolism , Interleukin-17/metabolism , Th17 Cells/pathology , Uveitis/pathology , Adult , Animals , Cytokines/genetics , Disease Models, Animal , Female , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Interleukin-17/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/metabolism , Th17 Cells/immunology , Uveitis/immunology , Young Adult
7.
J Autoimmun ; 114: 102507, 2020 11.
Article in English | MEDLINE | ID: mdl-32593472

ABSTRACT

IFN-γ and IL-17A can each elicit ocular autoimmunity independently of the other. Since absence of IFN-γ or IL-17A individually failed to abolish pathology of experimental autoimmune uveitis (EAU), we examined EAU development in the absence of both these cytokines. Ifng-/-Il17a-/- mice were fully susceptible to EAU with a characteristic eosinophilic ocular infiltrate, as opposed to a mononuclear infiltrate in WT mice. Retinal pathology in double-deficient mice was ameliorated when eosinophils were genetically absent or their migration was blocked, supporting a pathogenic role for eosinophils in EAU in the concurrent absence of IFN-γ and IL-17A. In EAU-challenged Ifng-/-Il17a-/- mice, ocular infiltrates contained increased GM-CSF-producing CD4+ T cells, and supernatants of retinal antigen-stimulated splenocytes contained enhanced levels of GM-CSF that contributed to activation and migration of eosinophils in vitro. Systemic or local blockade of GM-CSF ameliorated EAU in Ifng-/-Il17a-/- mice, reduced eosinophil peroxidase levels in the eye and in the serum and decreased eosinophil infiltration to the eye. These results support the interpretation that, in the concurrent absence of IFN-γ and IL-17A, GM-CSF takes on a major role as an inflammatory effector cytokine and drives an eosinophil-dominant pathology. Our findings may impact therapeutic strategies aiming to target IFN-γ and IL-17A in autoimmune uveitis.


Subject(s)
Autoimmunity , Eosinophilia/pathology , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Interferon-gamma/metabolism , Interleukin-17/metabolism , Retinitis/etiology , Retinitis/metabolism , Animals , Autoimmune Diseases/etiology , Autoimmune Diseases/metabolism , Autoimmune Diseases/pathology , Disease Models, Animal , Disease Susceptibility/immunology , Eosinophils/immunology , Eosinophils/metabolism , Eosinophils/pathology , Interferon-gamma/genetics , Interleukin-17/genetics , Mice , Mice, Knockout , Retinitis/pathology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
8.
Elife ; 92020 03 02.
Article in English | MEDLINE | ID: mdl-32118582

ABSTRACT

The eicosanoid lipoxin A4 (LXA4) has emerging roles in lymphocyte-driven diseases. We identified reduced LXA4 levels in posterior segment uveitis patients and investigated the role of LXA4 in the pathogenesis of experimental autoimmune uveitis (EAU). Immunization for EAU with a retinal self-antigen caused selective downregulation of LXA4 in lymph nodes draining the site of immunization, while at the same time amplifying LXA4 in the inflamed target tissue. T cell effector function, migration and glycolytic responses were amplified in LXA4-deficient mice, which correlated with more severe pathology, whereas LXA4 treatment attenuated disease. In vivo deletion or supplementation of LXA4 identified modulation of CC-chemokine receptor 7 (CCR7) and sphingosine 1- phosphate receptor-1 (S1PR1) expression and glucose metabolism in CD4+ T cells as potential mechanisms for LXA4 regulation of T cell effector function and trafficking. Our results demonstrate the intrinsic lymph node LXA4 pathway as a significant checkpoint in the development and severity of adaptive immunity.


Subject(s)
Autoimmunity/physiology , Eye/immunology , Lipoxins/physiology , Lymph Nodes/physiology , Retina/immunology , Animals , Autoimmune Diseases/immunology , CD4-Positive T-Lymphocytes/immunology , Case-Control Studies , Homeostasis , Humans , Lipoxins/biosynthesis , Lipoxins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, CCR7/metabolism , Sphingosine-1-Phosphate Receptors/metabolism , Uveitis/immunology
9.
Front Immunol ; 11: 583510, 2020.
Article in English | MEDLINE | ID: mdl-33569048

ABSTRACT

Non-infectious uveitis, a common cause of blindness in man, is often mediated by autoimmunity, a process in which cytokines play major roles. The biosynthesis and secretion of pro-inflammatory cytokines are regulated in part by tristetraprolin (TTP), an endogenous anti-inflammatory protein that acts by binding directly to specific sequence motifs in the 3'-untranslated regions of target mRNAs, promoting their turnover, and inhibiting synthesis of their encoded proteins. We recently developed a TTP-overexpressing mouse (TTPΔARE) by deleting an AU-rich element (ARE) instability motif from the TTP mRNA, resulting in increased accumulation of TTP mRNA and protein throughout the animal. Here, we show that homozygous TTPΔARE mice are resistant to the induction of experimental autoimmune uveitis (EAU) induced by interphotoreceptor retinoid-binding protein (IRBP), an established model for human autoimmune (noninfectious) uveitis. Lymphocytes from TTPΔARE mice produced lower levels of the pro-inflammatory cytokines IFN-γ, IL-17, IL-6, and TNFα than wild type (WT) mice. TTPΔARE mice also produced lower titers of antibodies against the uveitogenic protein. In contrast, TTPΔARE mice produced higher levels of the anti-inflammatory cytokine IL-10, and had higher frequencies of regulatory T-cells, which, moreover, displayed a moderately higher per-cell regulatory ability. Heterozygous mice developed EAU and associated immunological responses at levels intermediate between homozygous TTPΔARE mice and WT controls. TTPΔARE mice were able, however, to develop EAU following adoptive transfer of activated WT T-cells specific to IRBP peptide 651-670, and naïve T-cells from TTPΔARE mice could be activated by antibodies to CD3/CD28. Importantly, TTPΔARE antigen presenting cells were significantly less efficient compared to WT in priming naïve T cells, suggesting that this feature plays a major role in the dampened immune responses of the TTPΔARE mice. Our observations demonstrate that elevated systemic levels of TTP can inhibit the pathogenic processes involved in EAU, and suggest the possible use of TTP-based treatments in humans with uveitis and other autoimmune conditions.


Subject(s)
Autoimmune Diseases/metabolism , Nervous System Autoimmune Disease, Experimental/metabolism , Tristetraprolin/metabolism , Uveitis/metabolism , Animals , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , Female , Gene Knock-In Techniques , Male , Mice , Mice, Inbred C57BL , Nervous System Autoimmune Disease, Experimental/immunology , Nervous System Autoimmune Disease, Experimental/pathology , Tristetraprolin/immunology , Uveitis/immunology , Uveitis/pathology
10.
PLoS One ; 14(9): e0221159, 2019.
Article in English | MEDLINE | ID: mdl-31490965

ABSTRACT

Gender differences in Human immunodeficiency virus (HIV) disease progression and comorbidities have been extensively reported. Using the simian immunodeficiency virus (SIV) infected rhesus macaque model, we show that these differences are apparent very early during the course of infection. Though there were no major changes in the proportions of CD4 T cells or its subsets, central memory CD4 T cells from female macaques were found to differentially regulate a significantly larger number of genes at day 4 post-infection (PI) as compared to males. Pathway analysis revealed divergence of both canonical and biological pathways that persisted at day 10 PI. Changes in gene expression profiles were accompanied by a significant increase in plasma levels of pro-inflammatory mediators such as MCP-1/CCL2, I-TAC/CXCL11, and MIF. Though plasma levels of IFNα did not differ between male and female macaques, the expression levels of IFNα subtype-14, 16, IFNß, and IFNω were significantly upregulated in the lymph nodes of female macaques at day 10 PI as compared to male macaques. Our results suggest that the pathogenic sequelae seen during chronic infection may be shaped by gender differences in immune responses induced very early during the course of HIV infection.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Gene Expression Profiling , Immunity, Innate , Sex Characteristics , Simian Acquired Immunodeficiency Syndrome/genetics , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/physiology , Acute Disease , Animals , CD4-Positive T-Lymphocytes/metabolism , Chemokine CXCL11/blood , Female , Interferons/blood , Macaca mulatta , Male , RNA, Messenger/genetics , Receptors, CCR2/blood , Simian Acquired Immunodeficiency Syndrome/blood , Simian Acquired Immunodeficiency Syndrome/physiopathology
11.
J Autoimmun ; 102: 65-76, 2019 08.
Article in English | MEDLINE | ID: mdl-31080013

ABSTRACT

IL-22 has opposing effects in different tissues, from pro-inflammatory (skin, joints) to protective (liver, intestine) but little is known about its effects on neuroinflammation. We examined the effect of IL-22 on retinal tissue by using the model of experimental autoimmune uveitis (EAU) in IL-22-/- mice, as well as by intraocular injections of recombinant IL-22 or anti-IL-22 antibodies in wild type animals. During EAU, IL-22 was produced in the eye by CD4+ eye-infiltrating T cells. EAU-challenged IL-22-/- mice, as well as WT mice treated systemically or intraocularly with anti-IL-22 antibodies during the expression phase of disease, developed exacerbated retinal damage. Furthermore, IL-22-/- mice were more susceptible than WT controls to glutamate-induced neurotoxicity, whereas local IL-22 supplementation was protective, suggesting direct or indirect neuroprotective effects. Mechanistic studies revealed that retinal glial Müller cells express IL-22rα1 in vivo, and in vitro IL-22 enhanced their ability to suppress proliferation of effector T cells. Finally, IL-22 injected into the eye concurrently with IL-1, inhibited the (IL-1-induced) expression of multiple proinflammatory and proapoptotic genes in retinal tissue. These findings suggest that IL-22 can function locally within the retina to reduce inflammatory damage and provide neuroprotection by affecting multiple molecular and cellular pathways.


Subject(s)
Autoimmunity , Central Nervous System/immunology , Central Nervous System/metabolism , Disease Susceptibility , Interleukins/metabolism , Animals , Autoimmune Diseases/etiology , Autoimmune Diseases/metabolism , Autoimmune Diseases/pathology , Autoimmunity/genetics , Central Nervous System/pathology , Cytokines/metabolism , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/etiology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Ependymoglial Cells/immunology , Ependymoglial Cells/metabolism , Ependymoglial Cells/pathology , Gene Expression Profiling , Gene Expression Regulation/drug effects , Interleukins/genetics , Interleukins/pharmacology , Lymphocyte Activation/immunology , Mice , Mice, Knockout , Nervous System Diseases/etiology , Nervous System Diseases/metabolism , Nervous System Diseases/pathology , Neuroprotection/genetics , Severity of Illness Index , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Uveitis/etiology , Uveitis/metabolism , Uveitis/pathology , Interleukin-22
12.
Sci Rep ; 9(1): 7877, 2019 05 27.
Article in English | MEDLINE | ID: mdl-31133721

ABSTRACT

The consequences of simultaneous infection with Zika (ZIKV) and Dengue (DENV) viruses are poorly understood. Here we show that rhesus macaques experimentally coinfected simultaneously with ZIKV and DENV-2 demonstrated ZIKV or DENV replication without an enhancement of either infection. Coinfection was accompanied by an increase in the proportions of CD14+CD16+ pro-inflammatory subsets of monocytes and release of pro-inflammatory cytokines in the plasma. Numerous cytokines such as I-TAC, Eotaxin, RANTES, MCP-1, IFNγ and MIG demonstrated a biphasic peak that coincided with the differences in kinetics of ZIKV and DENV replication suggesting that viral replication likely differentially modulated the release of these cytokines. Red blood cell indices significantly declined during acute infection suggesting transient anemia, and was accompanied by elevated levels of muscle, liver and renal injury markers. These findings have implications for understanding the pathogenesis of coinfection in ZIKV and DENV endemic regions, and is the 1st report of an experimental coinfection using the rhesus macaque model for ZIKV and DENV infections.


Subject(s)
Coinfection/immunology , Dengue Virus/immunology , Dengue/immunology , Macaca mulatta/virology , Zika Virus Infection/immunology , Zika Virus/immunology , Animals , Coinfection/blood , Coinfection/virology , Cytokines/blood , Cytokines/immunology , Dengue/blood , Dengue/virology , Dengue Virus/physiology , Disease Models, Animal , Female , Humans , Inflammation/blood , Inflammation/immunology , Inflammation/virology , Macaca mulatta/blood , Macaca mulatta/immunology , Male , Monocytes/immunology , Monocytes/virology , Viral Load , Virus Replication , Zika Virus/physiology , Zika Virus Infection/blood , Zika Virus Infection/virology
13.
Front Immunol ; 8: 1258, 2017.
Article in English | MEDLINE | ID: mdl-29051763

ABSTRACT

Multiple sclerosis (MS) is an inflammatory demyelinating disease in which cytokines produced by immune cells that infiltrate the brain and spinal cord play a central role. We show here that the IL-12p35, the alpha subunit of IL-12 or IL-35 cytokine, might be an effective biologic for suppressing neuroinflammatory responses and ameliorating the pathology of experimental autoimmune encephalomyelitis (EAE), the mouse model of human MS. We further show that IL-12p35 conferred protection from neuropathy by inhibiting the expansion of pathogenic Th17 and Th1 cells and inhibiting trafficking of inflammatory cells into the brain and spinal cord. In addition, in vitro exposure of encephalitogenic cells to IL-12p35 suppressed their capacity to induce EAE by adoptive transfer. Importantly, the IL-12p35-mediated expansion of Treg and Breg cells and its amelioration of EAE correlated with inhibition of cytokine-induced activation of STAT1/STAT3 pathways. Moreover, IL-12p35 inhibited lymphocyte proliferation by suppressing the expressions of cell-cycle regulatory proteins. Taken together, these results suggest that IL-12p35 can be exploited as a novel biologic for treating central nervous system autoimmune diseases and offers the promise of ex vivo production of large amounts of Tregs and Bregs for immunotherapy.

14.
Sci Rep ; 7(1): 10498, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28874759

ABSTRACT

Structural and functional homologies between the Zika and Dengue viruses' envelope proteins raise the possibility that cross-reactive antibodies induced following Zika virus infection might enhance subsequent Dengue infection. Using the rhesus macaque model we show that prior infection with Zika virus leads to a significant enhancement of Dengue-2 viremia that is accompanied by neutropenia, lympocytosis, hyperglycemia, and higher reticulocyte counts, along with the activation of pro-inflammatory monocyte subsets and release of inflammatory mediators. Zika virus infection induced detectable Dengue cross-reactive serum IgG responses that significantly amplified after Dengue-2 virus infection. Serum from Zika virus immune animals collected prior to Dengue-2 infection showed significant capacity for in vitro antibody dependent enhancement of Dengue-1, 2, 3 and 4 serotypes suggesting that pre-existing immunity to Zika virus could potentially enhance infection by heterologous Dengue serotypes. Our results provide first in vivo evidence that prior exposure to Zika virus infection can enhance Dengue infection, which has implications for understanding pathogenesis and the development of vaccines.


Subject(s)
Coinfection , Dengue Virus/physiology , Dengue/veterinary , Monkey Diseases/virology , Viremia , Zika Virus Infection/veterinary , Zika Virus/physiology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody-Dependent Enhancement/immunology , Computational Biology/methods , Cross Reactions/immunology , Cytokines/metabolism , Dengue Virus/classification , Inflammation Mediators/metabolism , Macaca mulatta , Monkey Diseases/immunology , Neutralization Tests , Viral Load
15.
Nat Commun ; 8(1): 719, 2017 09 28.
Article in English | MEDLINE | ID: mdl-28959012

ABSTRACT

Interleukin 35 (IL-35) is a heterodimeric cytokine composed of IL-12p35 and Ebi3 subunits. IL-35 suppresses autoimmune diseases while preventing host defense to infection and promoting tumor growth and metastasis by converting resting B and T cells into IL-10-producing and IL-35-producing regulatory B (Breg) and T (Treg) cells. Despite sharing the IL-12p35 subunit, IL-12 (IL-12p35/IL-12p40) promotes inflammatory responses whereas IL-35 (IL-12p35/Ebi3) induces regulatory responses, suggesting that IL-12p35 may have unknown intrinsic immune-regulatory functions regulated by its heterodimeric partner. Here we show that the IL-12p35 subunit has immunoregulatory functions hitherto attributed to IL-35. IL-12p35 suppresses lymphocyte proliferation, induces expansion of IL-10-expressing and IL-35-expressing B cells and ameliorates autoimmune uveitis in mice by antagonizing pathogenic Th17 responses. Recapitulation of essential immunosuppressive activities of IL-35 indicates that IL-12p35 may be utilized for in vivo expansion of Breg cells and autologous Breg cell immunotherapy. Furthermore, our uveitis data suggest that intrinsic immunoregulatory activities of other single chain IL-12 subunits might be exploited to treat other autoimmune diseases.IL-12p35 is common to IL-35 and IL-12, which have opposing effects on inflammation. Here the authors show that the IL-12p35 subunit induces regulatory B cells and can be used therapeutically to limit autoimmune uveitis in mice.


Subject(s)
Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , B-Lymphocytes, Regulatory/metabolism , Interleukin-10/metabolism , Interleukin-12 Subunit p35/metabolism , Animals , Cell Proliferation , Immunosuppression Therapy , Interleukin-12 Receptor beta 2 Subunit/metabolism , Mice, Inbred C57BL , Mice, Knockout , Protein Multimerization , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Uveitis/immunology , Uveitis/pathology
16.
Immunity ; 46(2): 167-169, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28228273

ABSTRACT

Genetic variations in complement factor H (CFH) confer greater risk for age-related macular degeneration (AMD). In this issue of Immunity, Calippe et al. (2017) uncover a non-canonical role for CFH in the inhibition of mononuclear phagocyte elimination from sub-retinal lesions, providing insight into the pathophysiology of AMD associated with CFH variants.


Subject(s)
Complement Factor H/genetics , Macular Degeneration/genetics , Genetic Variation , Genotype , Humans , Polymorphism, Single Nucleotide
17.
Gut Microbes ; 8(1): 59-66, 2017 01 02.
Article in English | MEDLINE | ID: mdl-28045579

ABSTRACT

Recent discoveries on the role of commensal microbiota have significantly changed our understanding of human physiology. The host-microbiota interplay is now an important aspect to take into account to understand immune responses and immunological diseases. Autoimmune uveitis is a sight-threatening disease that arises without a known infectious etiology. It is unknown where and how autoreactive T cells become primed to trigger disease in the eye, which is an immune privileged site. We recently reported data supporting the notion that retina-specific T cells receive a signal in the gut from commensal microbiota-derived cross-reactive antigen(s) and trigger autoimmune uveitis in the R161H mouse model. Here we discuss our published findings, as well as our recent attempts to identify the responsible microbe(s) by using different antibiotic treatments, 16S rDNA sequencing and homology searches for candidate antigenic mimic(s) of the retinal antigen.


Subject(s)
Antigens/immunology , Autoimmune Diseases/microbiology , Gastrointestinal Microbiome , Uveitis/immunology , Uveitis/microbiology , Animals , Autoimmune Diseases/immunology , Autoimmunity , Humans , Retina/immunology , T-Lymphocytes/immunology
18.
Mediators Inflamm ; 2016: 2939370, 2016.
Article in English | MEDLINE | ID: mdl-27703302

ABSTRACT

Uveitis is a potentially sight-threatening disease characterized by repeated cycles of remission and recurrent inflammation. The JAK/STAT pathway regulates the differentiation of pathogenic Th1 and Th17 cells that mediate uveitis. A SOCS1 mimetic peptide (SOCS1-KIR) that inhibits JAK2/STAT1 pathways has recently been shown to suppress experimental autoimmune uveitis (EAU). However, it is not clear whether SOCS1-KIR ameliorated uveitis by targeting JAK/STAT pathways of pathogenic lymphocytes or via inhibition of macrophages and antigen-presenting cells that also enter the retina during EAU. To further investigate mechanisms that mediate SOCS1-KIR effects and evaluate the efficacy of SOCS1-KIR as an investigational drug for chronic uveitis, we induced EAU in rats by adoptive transfer of uveitogenic T-cells and monitored disease progression and severity by slit-lamp microscopy, histology, and optical coherence tomography. Topical administration of SOCS1-KIR ameliorated acute and chronic posterior uveitis by inhibiting Th17 cells and the recruitment of inflammatory cells into retina while promoting expansion of IL-10-producing Tregs. We further show that SOCS1-KIR conferred protection of resident retinal cells that play critical role in vision from cytotoxic effects of inflammatory cytokines by downregulating proapoptotic genes. Thus, SOCS1-KIR suppresses uveitis and confers neuroprotective effects and might be exploited as a noninvasive treatment for chronic uveitis.


Subject(s)
Peptides/therapeutic use , Suppressor of Cytokine Signaling 1 Protein/chemistry , Uveitis/drug therapy , Animals , Antigen-Presenting Cells/drug effects , Antigen-Presenting Cells/metabolism , Biomimetics , Chronic Disease , Flow Cytometry , Janus Kinase 2/metabolism , Macrophages/drug effects , Macrophages/metabolism , Peptides/chemistry , Rats , STAT1 Transcription Factor/metabolism , Th17 Cells/drug effects , Th17 Cells/metabolism
19.
J Exp Med ; 212(10): 1739-52, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26347474

ABSTRACT

IFN-γ is a pathogenic cytokine involved in inflammation. Paradoxically, its deficiency exacerbates experimental autoimmune encephalomyelitis, uveitis, and arthritis. Here, we demonstrate using IFN-γ(-/-) mice repleted with IFN-γ +/+: NK cells that innate production of IFN-γ from NK cells is necessary and sufficient to trigger an endogenous regulatory circuit that limits autoimmunity. After immunization, DCs recruited IFN-γ-producing NK cells to the draining lymph node and interacted with them in a CXCR3-dependent fashion. The interaction caused DCs to produce IL-27, which in turn enhanced IFN-γ production by NK cells, forming a self-amplifying positive feedback loop. IL-10, produced by the interacting cells themselves, was able to limit this process. The NK-DC-dependent IL-27 inhibited development of the adaptive pathogenic IL-17 response and induced IL-10-producing Tr1-like cells, which ameliorated disease in an IL-10-dependent manner. Our data reveal that an early NK-DC interaction controls the adaptive Th17 response and limits tissue-specific autoimmunity through an innate IFN-γ-IL-27 axis.


Subject(s)
Dendritic Cells/immunology , Interferon-gamma/immunology , Interleukins/immunology , Killer Cells, Natural/immunology , Th17 Cells/immunology , Uveitis/immunology , Animals , Autoimmune Diseases/immunology , Feedback, Physiological , Interferon-gamma/genetics , Interferon-gamma/metabolism , Interleukin-10/metabolism , Interleukins/metabolism , Killer Cells, Natural/metabolism , Mice, Inbred C57BL , Mice, Knockout , Receptors, CXCR3/genetics , Receptors, CXCR3/immunology , Receptors, CXCR3/metabolism , Uveitis/pathology
20.
Invest Ophthalmol Vis Sci ; 56(9): 5439-49, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26284549

ABSTRACT

PURPOSE: Experimental autoimmune uveitis (EAU) induced in mice using the retinal antigen interphotoreceptor retinoid binding protein (IRBP) is an animal model for posterior uveitis in humans. However, EAU induced by native IRBP protein or its widely used epitope amino acid residues 1 to 20 of human IRBP (hIRBP1-20) is inconsistent, often showing low scores and incidence. We found an urgent need to identify a better pathogenic epitope for the C57BL/6 strain. METHODS: Mice were immunized with uveitogenic peptides or with native bovine IRBP. Clinical and histological disease and associated immunological responses were evaluated. Truncated and substituted peptides, as well as bioinformatic analyses, were used to identify critical major histocompatibility complex (MHC)/T cell receptor (TCR) contact residues and the minimal core epitope. RESULTS: The new uveitogenic epitope of IRBP, amino acid residues 651 to 670 of human IRBP (LAQGAYRTAVDLESLASQLT [hIRBP651-670]) is uveitogenic for mice of the H-2b haplotype and elicits EAU with a higher severity and incidence in C57BL/6 mice than the previously characterized hIRBP1-20 epitope. Using truncated and substituted peptides, as well as bioinformatic analysis, we identified the critical contact residues with MHC/TCR and defined the minimal core epitope. This made it possible to design MHC tetramers and use them to detect epitope-specific T cells in the uveitic eye and in lymphoid organs of hIRBP651-670-immunized mice. CONCLUSIONS: Data suggest that hIRBP651-670 is an epitope naturally processed from a conserved region of native IRBP, potentially explaining its relatively high uveitogenicity. This epitope should be useful for basic and preclinical studies of uveitis in the C57BL/6 model and gives access to genetically engineered mice available on this background.


Subject(s)
Autoimmune Diseases/immunology , Eye Proteins/immunology , Histocompatibility Antigens Class II/immunology , Immunity, Cellular , Retinitis/immunology , Retinol-Binding Proteins/immunology , T-Lymphocytes/immunology , Uveitis, Posterior/immunology , Animals , Autoimmune Diseases/metabolism , Autoimmune Diseases/pathology , Cattle , Cells, Cultured , Disease Models, Animal , Epitopes, T-Lymphocyte/immunology , Eye Proteins/metabolism , Haplotypes , Histocompatibility Antigens Class II/metabolism , Humans , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Retinitis/metabolism , Retinitis/pathology , Retinol-Binding Proteins/metabolism , Severity of Illness Index , Uveitis, Posterior/metabolism , Uveitis, Posterior/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...