Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 11747, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38778119

ABSTRACT

In winter, the paddy residues become wet during morning and late evening due to dew, which restricts the operation of sowing machines (Happy Seeder and Super Seeder) into paddy residues, as wet residues do not slide on furrow openers/tines. A PAU Smart Seeder (PSS) was developed and evaluated for a four-wheel tractor that can sow wheat with optimum crop establishment in combined harvested rice fields. The PSS were evaluated for its performance under varying straw load, forward speed, and rotor speed in terms of fuel consumption, field capacity, seed emergence, and grain yield. The crop establishment and wheat yield of PSS was also compared with the existing straw management machines Happy Seeder (HS) and Super Seeder (SS) under heavy paddy residue conditions. The effect of the straw load was more pronounced on dependent variables than the effect of the speed index. PSS performance was best at a forward speed of 2.6 km h-1, rotor speed of 127.5 rpm, and a straw load of 6 t ha-1. Average fuel consumption using PSS was lower than SS but higher than HS. Wheat emergence was higher by 15.6 and 25.7% on the PSS plots compared to HS and SS, respectively. Average wheat grain yield in PSS plots was significantly higher by 12.7 and 18.9% than SS and HS, respectively in one experiment, while the grain yield was similar for both PSS and HS in other experiments. PSS has a novel mechanism to manage paddy straw and simultaneously sow wheat into a heavy straw load (> 8 t ha-1) mixture of anchored and loose straw. In conclusion, PSS showed promise for in-situ management of rice straw as it eliminates most of the operational problems encountered by the existing seeders (HS and SS).


Subject(s)
Oryza , Seeds , Triticum , Oryza/growth & development , India , Triticum/growth & development , Seeds/growth & development , Agriculture/methods , Edible Grain , Crops, Agricultural/growth & development , Crop Production/methods
2.
Sci Rep ; 14(1): 11389, 2024 05 18.
Article in English | MEDLINE | ID: mdl-38762518

ABSTRACT

Phosphorus (P) use efficiency in alkaline/calcareous soils is only 20% due to precipitation of P2O5 with calcium and magnesium. However, coating Diammonium Phosphate (DAP) with phosphorus solubilizing bacteria (PSB) is more appropriate to increase fertilizer use efficiency. Therefore, with the aim to use inorganic fertilizers more effectively present study was conducted to investigate comparative effect of coated DAP with PSB strains Bacillus subtilis ZE15 (MN003400), Bacillus subtilis ZR3 (MN007185), Bacillus megaterium ZE32 (MN003401) and Bacillus megaterium ZR19 (MN007186) and their extracted metabolites with uncoated DAP under axenic conditions. Gene sequencing was done against various sources of phosphorus to analyze genes responsible for phosphatase activity. Alkaline phosphatase (ALP) gene amplicon of 380bp from all tested strains was showed in 1% w/v gel. Release pattern of P was also improved with coated fertilizer. The results showed that coated phosphatic fertilizer enhanced shoot dry weight by 43 and 46% under bacterial and metabolites coating respectively. Shoot and root length up to 44 and 42% with metabolites coated DAP and 41% with bacterial coated DAP. Physiological attributes also showed significant improvement with coated DAP over conventional. The results supported the application of coated DAP as a useful medium to raise crop yield even at lower application rates i.e., 50 and 75% DAP than non-coated 100% DAP application which advocated this coating technique a promising approach for advancing circular economy and sustainable development in modern agriculture.


Subject(s)
Bacillus megaterium , Fertilizers , Phosphates , Phosphorus , Soil Microbiology , Soil , Zea mays , Zea mays/metabolism , Zea mays/growth & development , Phosphorus/metabolism , Soil/chemistry , Bacillus megaterium/metabolism , Bacillus megaterium/genetics , Bacillus megaterium/growth & development , Phosphates/metabolism , Bacillus subtilis/metabolism , Bacillus subtilis/growth & development , Bacillus subtilis/genetics
3.
Sci Rep ; 14(1): 10638, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724562

ABSTRACT

Suspended sediment concentration prediction is critical for the design of reservoirs, dams, rivers ecosystems, various operations of aquatic resource structure, environmental safety, and water management. In this study, two different machine models, namely the cascade correlation neural network (CCNN) and feedforward neural network (FFNN) were applied to predict daily-suspended sediment concentration (SSC) at Simga and Jondhara stations in Sheonath basin, India. Daily-suspended sediment concentration and discharge data from 2010 to 2015 were collected and used to develop the model to predict suspended sediment concentration. The developed models were evaluated using statistical indices like Nash and Sutcliffe efficiency coefficient (NES), root mean square error (RMSE), Willmott's index of agreement (WI), and Legates-McCabe's index (LM), supplemented by a scatter plot, density plots, histograms and Taylor diagram for graphical representation. The developed model was evaluated and compared with CCNN and FFNN. Nine input combinations were explored using different lag-times for discharge (Qt-n) and suspended sediment concentration (St-n) as input variables, with the current suspended sediment concentration as the desired output, to develop CCNN and FFNN models. The CCNN4 model with 4 lagged inputs (St-1, St-2, St-3, St-4) outperformed the other developed models with the lowest RMSE = 95.02 mg/l and the highest NES = 0.0.662, WI = 0.890 and LM = 0.668 for the Jondhara Station while the same CCNN4 model secure as the best with the lowest RMSE = 53.71 mg/l and the highest NES = 0.785, WI = 0.936 and LM = 0.788 for the Simga Station. The result shows the CCNN model was better than the FFNN model for predicting daily-suspended sediment at both stations in the Sheonath basin, India. Overall, CCNN showed better forecasting potential for suspended sediment concentration compared to FFNN at both stations, demonstrating their applicability for hydrological forecasting with complex relationships.

4.
Sci Rep ; 14(1): 6533, 2024 03 19.
Article in English | MEDLINE | ID: mdl-38503773

ABSTRACT

Nitrogen (N) and phosphorus (P) are vital for crop growth. However, most agricultural systems have limited inherent ability to supply N and P to crops. Biochars (BCs) are strongly advocated in agrosystems and are known to improve the availability of N and P in crops through different chemical transformations. Herein, a soil-biochar incubation experiment was carried out to investigate the transformations of N and P in two different textured soils, namely clay loam and loamy sand, on mixing with rice straw biochar (RSB) and acacia wood biochar (ACB) at each level (0, 0.5, and 1.0% w/w). Ammonium N (NH4-N) decreased continuously with the increasing incubation period. The ammonium N content disappeared rapidly in both the soils incubated with biochars compared to the unamended soil. RSB increased the nitrate N (NO3-N) content significantly compared to ACB for the entire study period in both texturally divergent soils. The nitrate N content increased with the enhanced biochar addition rate in clay loam soil until 15 days after incubation; however, it was reduced for the biochar addition rate of 1% compared to 0.5% at 30 and 60 days after incubation in loamy sand soil. With ACB, the net increase in nitrate N content with the biochar addition rate of 1% remained higher than the 0.5% rate for 60 days in clay loam and 30 days in loamy sand soil. The phosphorus content remained consistently higher in both the soils amended with two types of biochars till the completion of the experiment.


Subject(s)
Ammonium Compounds , Soil Pollutants , Soil/chemistry , Phosphorus , Sand , Clay , Nitrates , Nitrogen , Charcoal/chemistry , Soil Pollutants/analysis
6.
Sci Rep ; 14(1): 337, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172121

ABSTRACT

In the plains of western North India, traditional rice and wheat cropping systems (RWCS) consume a significant amount of energy and carbon. In order to assess the long-term energy budgets, ecological footprint, and greenhouse gas (GHG) pollutants from RWCS with residual management techniques, field research was conducted which consisted of fourteen treatments that combined various tillage techniques, fertilization methods, and whether or not straw return was present in randomized block design. By altering the formation of aggregates and the distribution of carbon within them, tillage techniques can affect the dynamics of organic carbon in soil and soil microbial activity. The stability of large macro-aggregates (> 2 mm), small macro-aggregates (2.0-2.25 mm), and micro-aggregates in the topsoil were improved by 35.18%, 33.52%, and 25.10%, respectively, over conventional tillage (0-20 cm) using tillage strategies for conservation methods (no-till in conjunction with straw return and organic fertilizers). The subsoil (20-40 cm) displayed the same pattern. In contrast to conventional tilling with no straw returns, macro-aggregates of all sizes and micro-aggregates increased by 24.52%, 28.48%, and 18.12%, respectively, when conservation tillage with organic and chemical fertilizers was used. The straw return (aggregate-associated C) also resulted in a significant increase in aggregate-associated carbon. When zero tillage was paired with straw return, chemical, and organic fertilizers, the topsoil's overall aggregate-associated C across all aggregate proportions increased. Conversely, conventional tillage, in contrast to conservation tillage, included straw return as well as chemical and organic fertilizers and had high aggregate-associated C in the subsurface. This study finds that tillage techniques could change the dynamics of microbial biomass in soils and organic soil carbon by altering the aggregate and distribution of C therein.


Subject(s)
Oryza , Soil , Carbon/analysis , Triticum , Carbon Footprint , Fertilizers , Agriculture/methods , China
7.
Sci Rep ; 14(1): 1399, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38228839

ABSTRACT

In the context of degradation of soil health, environmental pollution, and yield stagnation in the rice-wheat system in the Indo-Gangetic Plains of South Asia, an experiment was established in split plot design to assess the long-term effect of crop residue management on productivity and phosphorus requirement of wheat in rice-wheat system. The experiment comprised of six crop residue management practices as the main treatment factor with three levels (0, 30 and 60 kg P2O5 ha-1) of phosphorus fertilizer as sub-treatments. Significant improvement in soil aggregation, bulk density, and infiltration rate was observed under residue management (retention/incorporation) treatments compared to residue removal or residue burning. Soil organic carbon (SOC), available nutrient content (N, P, and K), microbial count, and enzyme activities were also significantly higher in conservation tillage and residue-treated plots than without residue/burning treatments. The residue derived from both crops when was either retained/incorporated improved the soil organic carbon (0.80%) and resulted in a significant increase in SOC (73.9%) in the topsoil layer as compared to the conventional practice. The mean effect studies revealed that crop residue management practices and phosphorus levels significantly influenced wheat yield attributes and productivity. The higher grain yield of wheat was recorded in two treatments, i.e. the basal application of 60 kg P2O5 ha-1 without residue incorporation and the other with half the P-fertilizer (30 kg P2O5 ha-1) with rice residue only. The grain yield of wheat where the rice and wheat residue were either retained/incorporated without phosphorus application was at par with 30 and 60 kg P2O5ha-1. Phosphorus levels also significantly affected wheat productivity and available P content in the soil. Therefore, results suggested that crop residue retention following the conservation tillage approach improved the yield of wheat cultivated in the rice-wheat cropping system.


Subject(s)
Oryza , Soil , Soil/chemistry , Agriculture/methods , Triticum/metabolism , Oryza/metabolism , Phosphorus/metabolism , Carbon/metabolism , Fertilizers/analysis , Edible Grain/metabolism , Fertilization
8.
Sci Rep ; 13(1): 14981, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37696862

ABSTRACT

The design and selection of ideal emitter discharge rates can be aided by accurate information regarding the wetted soil pattern under surface drip irrigation. The current field investigation was conducted in an apple orchard in SKUAST- Kashmir, Jammu and Kashmir, a Union Territory of India, during 2017-2019. The objective of the experiment was to examine the movement of moisture over time and assess the extent of wetting in both horizontal and vertical directions under point source drip irrigation with discharge rates of 2, 4, and 8 L h-1. At 30, 60, and 120 min since the beginning of irrigation, a soil pit was dug across the length of the wetted area on the surface in order to measure the wetting pattern. For measuring the soil moisture movement and wetted soil width and depth, three replicas of soil samples were collected according to the treatment and the average value were considered. As a result, 54 different experiments were conducted, resulting in the digging of pits [3 emitter discharge rates × 3 application times × 3 replications × 2 (after application and 24 after application)]. This study utilized the Drip-Irriwater model to evaluate and validate the accuracy of predictions of wetting fronts and soil moisture dynamics in both orientations. Results showed that the modeled values were very close to the actual field values, with a mean absolute error of 0.018, a mean bias error of 0.0005, a mean absolute percentage error of 7.3, a root mean square error of 0.023, a Pearson coefficient of 0.951, a coefficient of correlation of 0.918, and a Nash-Sutcliffe model efficiency coefficient of 0.887. The wetted width just after irrigation was measured at 14.65, 16.65, and 20.62 cm; 16.20, 20.25, and 23.90 cm; and 20.00, 24.50, and 28.81 cm in 2, 4, and 8 L h-1, at 30, 60, and 120 min, respectively, while the wetted depth was observed 13.10, 16.20, and 20.44 cm; 15.10, 21.50, and 26.00 cm; 19.40, 25.00, and 31.00 cm, respectively. As the flow rate from the emitter increased, the amount of moisture dissemination grew (both immediately and 24 h after irrigation). The soil moisture contents were observed 0.4300, 0.3808, 0.2298, 0.1604, and 0.1600 cm3 cm-3 just after irrigation in 2 L h-1 while 0.4300, 0.3841, 0.2385, 0.1607, and 0.1600 cm3 cm-3 were in 4 L h-1 and 0.4300, 0.3852, 0.2417, 0.1608, and 0.1600 cm3 cm-3 were in 8 L h-1 at 5, 10, 15, 20, and 25 cm soil depth in 30 min of application time. Similar distinct increments were found in 60, and 120 min of irrigation. The findings suggest that this simple model, which only requires soil, irrigation, and simulation parameters, is a valuable and practical tool for irrigation design. It provides information on soil wetting patterns and soil moisture distribution under a single emitter, which is important for effectively planning and designing a drip irrigation system. Investigating soil wetting patterns and moisture redistribution in the soil profile under point source drip irrigation helps promote efficient planning and design of a drip irrigation system.

9.
Heliyon ; 9(6): e16645, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37346349

ABSTRACT

Sporadic burning of rice straw and the particulate air pollution caused consequently have created a pressing need for identification of practical environmentally sound in situ rice residue management methods. However, the agronomic interventions associated with the agri-inputs particularly the type of nitrogen fertilizer source must be worked out for these interventions. In a two-year field study performed at two different locations representing sandy loam and clay loam soil types, zero tillage with application of nitrophosphate (applied as basal dose through drilling) in combination with urea (applied at 1st irrigation + 3 foliar sprays of urea at weekly interval) significantly enhanced the grain and straw yield of wheat. The soil microbial viable cell counts and dehydrogenase and urease enzyme activities were also recorded to be highest in this treatment indicating the occurrence of higher living microbial population. The treatment × response variable Principle component analysis (PCA) biplot depicted relative variation among the residue management treatments/Nitrogen fertilizer sub-treatments and the enzyme activities as response variables. A variation in the soil organic content components was recognized through Fourier transform infra-red spectroscopy (FT-IRS) studies. Irrespective of the soil types under study, the FT-IR spectra exhibited presence of the aromatic carbon functional groups in residue incorporated treatments as compared to the no residue incorporation treatment.

10.
Sci Rep ; 13(1): 5077, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36977808

ABSTRACT

Nowadays, Combine Harvesters are the most commonly used device for harvesting crops; as a result, a large amount of plant material and crop residue is concentrated into a narrow band of plant material that exits the combine, challenging the residue management task. This paper aims to develop a crop residue management machine that can chop paddy residues and mix them with the soil of the combined harvested paddy field. For this purpose, two important units are attached to the developed machine: the chopping and incorporation units. The tractor operates this machine as the main source, with a power range of about 55.95 kW. The four independent parameters selected for the study were rotary speed (R1 = 900 & R2 = 1100 rpm), forward speed (F1 = 2.1 & F2 = 3.0 Kmph), horizontal adjustment (H1 = 550 & H2 = 650 mm), and vertical adjustment (V1 = 100 & V2 = 200 mm) between the straw chopper shaft and rotavator shaft and its effect was found on incorporation efficiency, shredding efficiency, and trash size reduction of chopped paddy residues. The incorporation of residue and shredding efficiency was highest at V1H2F1R2 (95.31%) and V1H2F1R2 (61.92%) arrangements. The trash reduction of chopped paddy residue was recorded maximum at V1H2F2R2 (40.58%). Therefore, this study concludes that the developed residue management machine with some modifications in power transmission can be suggested to the farmers to overcome the paddy residue issue in combined harvested paddy fields.

11.
Plants (Basel) ; 9(9)2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32825178

ABSTRACT

Artemisia absinthium-wormwood (Asteraceae)-is a very important species in the history of medicine, formerly described in medieval Europe as "the most important master against all exhaustions". It is a species known as a medicinal plant in Europe and also in West Asia and North America. The raw material obtained from this species is Absinthii herba and Artemisiae absinthii aetheroleum. The main substances responsible for the biological activity of the herb are: the essential oil, bitter sesquiterpenoid lactones, flavonoids, other bitterness-imparting compounds, azulenes, phenolic acids, tannins and lignans. In the official European medicine, the species is used in both allopathy and homeopathy. In the traditional Asian and European medicine, it has been used as an effective agent in gastrointestinal ailments and also in the treatment of helminthiasis, anaemia, insomnia, bladder diseases, difficult-to-heal wounds, and fever. Today, numerous other directions of biological activity of the components of this species have been demonstrated and confirmed by scientific research, such as antiprotozoal, antibacterial, antifungal, anti-ulcer, hepatoprotective, anti-inflammatory, immunomodulatory, cytotoxic, analgesic, neuroprotective, anti-depressant, procognitive, neurotrophic, and cell membrane stabilizing and antioxidant activities. A. absinthium is also making a successful career as a cosmetic plant. In addition, the importance of this species as a spice plant and valuable additive in the alcohol industry (famous absinthe and vermouth-type wines) has not decreased. The species has also become an object of biotechnological research.

12.
Plants (Basel) ; 8(11)2019 Nov 09.
Article in English | MEDLINE | ID: mdl-31717611

ABSTRACT

Targeted profiling of polyphenols in trees may reveal valuable sources of natural compounds with major applications in pharmacology and disease control. The current study targeted the profiling of polyphenols using HPLC-DAD in Quercus robur, Q. macrocarpa and Q. acutissima bark extracts. Free radical scavenging of each extract was investigated using antioxidant assays. Antimicrobial activities against a wide spectrum of bacteria and fungi were explored, as well as anticancer activities against different cancer cell lines. The HPLC-DAD analyses revealed the availability of several polyphenols in high amounts, including ellagic acid (in Q. robur) and caffeic acid (in Q. macrocarpa) in all three species. The bioactivity assay revealed high antioxidant activity in Q. robur compared to that of the other species, as well as phenolic standards. The three oak bark extracts showed clear antibacterial activities against most bacteria tested, with the highest antibacterial activities in the extracts of Q. robur. In addition, the three extracts showed higher antibacterial activities against Pseudomonas aeruginosa, Micrococcus flavus, and Escherichia coli compared to that of other bacteria. There were strong antifungal activities against some fungi, such as Aspergillus flavus, Penicillium funiculosum, and Penicillium ochrochloron. There were also noticeable anticancer activities against MCF-7, HeLa, Jurkat, and HT-29 cell lines, with the highest anticancer activity in the extracts of Q. robur. This is the first study that reveals not only novel sources of important polyphenols (e.g. ellagic acid) in Q. robur, Q. macrocarpa and Q. acutissima bark but also their anticancer activities against diverse cancer cell lines.

SELECTION OF CITATIONS
SEARCH DETAIL
...