Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(5): e0232081, 2020.
Article in English | MEDLINE | ID: mdl-32374763

ABSTRACT

The reproduction of reliable in vitro models of human skeletal muscle is made harder by the intrinsic 3D structural complexity of this tissue. Here we coupled engineered hydrogel with 3D structural cues and specific mechanical properties to derive human 3D muscle constructs ("myobundles") at the scale of single fibers, by using primary myoblasts or myoblasts derived from embryonic stem cells. To this aim, cell culture was performed in confined, laminin-coated micrometric channels obtained inside a 3D hydrogel characterized by the optimal stiffness for skeletal muscle myogenesis. Primary myoblasts cultured in our 3D culture system were able to undergo myotube differentiation and maturation, as demonstrated by the proper expression and localization of key components of the sarcomere and sarcolemma. Such approach allowed the generation of human myobundles of ~10 mm in length and ~120 µm in diameter, showing spontaneous contraction 7 days after cell seeding. Transcriptome analyses showed higher similarity between 3D myobundles and skeletal signature, compared to that found between 2D myotubes and skeletal muscle, mainly resulting from expression in 3D myobundles of categories of genes involved in skeletal muscle maturation, including extracellular matrix organization. Moreover, imaging analyses confirmed that structured 3D culture system was conducive to differentiation/maturation also when using myoblasts derived from embryonic stem cells. In conclusion, our structured 3D model is a promising tool for modelling human skeletal muscle in healthy and diseases conditions.


Subject(s)
Cell Culture Techniques , Muscle Fibers, Skeletal/cytology , Muscle, Skeletal/cytology , Tissue Engineering , Tissue Scaffolds/chemistry , Animals , Cell Culture Techniques/instrumentation , Cell Culture Techniques/methods , Cell Differentiation , Cells, Cultured , Dimethylpolysiloxanes/chemistry , Humans , Hydrogels/chemistry , Materials Testing , Mice , Models, Biological , Molecular Conformation , Muscle Development , Muscle, Skeletal/physiology , Myoblasts/cytology , Myoblasts/physiology , Single-Cell Analysis/instrumentation , Single-Cell Analysis/methods , Tissue Engineering/instrumentation , Tissue Engineering/methods
2.
FASEB J ; 34(3): 4085-4106, 2020 03.
Article in English | MEDLINE | ID: mdl-31950563

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic disorder characterized by inflammation of the gastrointestinal (GI) tract, and it is associated with different neurological disorders. Recent evidence has demonstrated that the gut-brain-axis has a central function in the perpetuation of IBS, and for this reason, it can be considered a possible therapeutic target. N-Palmitoylethanolamine-oxazoline (PEA-OXA) possesses anti-inflammatory and potent neuroprotective effects. Although recent studies have explained the neuroprotective properties of PEA-OXA, nothing is known about its effects on the gut-brain axis during colitis. The aim of this study is to explore the mechanism and the effect of PEA-OXA on the gut-brain axis in rats subjected to experimental colitis induced by oral administration of dextran sulfate sodium (DSS). Daily oral administration of PEA-OXA (10 mg/kg daily o.s.) was able to decrease the body weight loss, macroscopic damage, colon length, histological alteration, and inflammation after DSS induction. Additionally, PEA-OXA administration enhanced neurotrophic growth factor release and decreased the astroglial and microglial activation induced by DSS. Moreover, PEA-OXA restored intestinal permeability and tight junctions (TJs) as well as reduced apoptosis in the colon and brain. In our work, we demonstrated, for the first time, the action of PEA-OXA on the gut-brain axis in a model of DSS-induced colitis and its implication on the "secondary" effects associated with colonic disturbance.


Subject(s)
Amides/therapeutic use , Ethanolamines/therapeutic use , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Oxazoles/therapeutic use , Palmitic Acids/therapeutic use , Animals , Body Weight/drug effects , Calcium-Binding Proteins/metabolism , Dextran Sulfate/toxicity , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Glial Fibrillary Acidic Protein/metabolism , Humans , Immunohistochemistry , Inflammatory Bowel Diseases/chemically induced , Intercellular Adhesion Molecule-1/metabolism , Male , Microfilament Proteins/metabolism , P-Selectin/metabolism , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...