Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(20)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37894662

ABSTRACT

The growing applications of peptide-based therapeutics require the development of efficient protocols from the perspective of an industrial scale-up. T3P® (cyclic propylphosphonic anhydride) promotes amidation in the solution-phase through a biomimetic approach, similar to the activation of carboxylic moiety catalyzed by ATP-grasp enzymes in metabolic pathways. The T3P® induced coupling reaction was applied in this study to the solution-phase peptide synthesis (SolPPS). Peptide bond formation occurred in a few minutes with high efficiency and no epimerization, generating water-soluble by-products, both using N-Boc or N-Fmoc amino acids. The optimized protocol, which was successfully applied to the iterative synthesis of a pentapeptide, also allowed for a decrease in the solvent volume, thus improving process sustainability. The protocol was finally extended to the liquid-phase peptide synthesis (LPPS), where the isolation of the peptide was performed using precipitation, thus also showing the suitability of this coupling reagent to this emerging technique.


Subject(s)
Biomimetics , Peptides
2.
ACS Omega ; 7(30): 26919-26927, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35936453

ABSTRACT

The enantioselective 1,3-dipolar cycloaddition of nitrones and arylpropionaldehydes to generate highly functionalized scaffolds for application in drug discovery was herein investigated. The use of a second-generation MacMillan catalyst as hydrochloride salt consistently accelerated the reaction speed, allowing a decrease in the reaction time up to >100 times, still affording 4-isoxazolines with good to excellent enantiomeric ratios at room temperature. As a proof of concept, further functionalization of the isoxazoline core through Pd-catalyzed cross-coupling was performed, generating differently functionalized chemical architectures in high yield.

3.
Eur J Med Chem ; 225: 113779, 2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34418785

ABSTRACT

Starting from six potential hits identified in a virtual screening campaign directed to a cryptic pocket of BACE-1, at the edge of the catalytic cleft, we have synthesized and evaluated six hybrid compounds, designed to simultaneously reach BACE-1 secondary and catalytic sites and to exert additional activities of interest for Alzheimer's disease (AD). We have identified a lead compound with potent in vitro activity towards human BACE-1 and cholinesterases, moderate Aß42 and tau antiaggregating activity, and brain permeability, which is nontoxic in neuronal cells and zebrafish embryos at concentrations above those required for the in vitro activities. This compound completely restored short- and long-term memory in a mouse model of AD (SAMP8) relative to healthy control strain SAMR1, shifted APP processing towards the non-amyloidogenic pathway, reduced tau phosphorylation, and increased the levels of synaptic proteins PSD95 and synaptophysin, thereby emerging as a promising disease-modifying, cognition-enhancing anti-AD lead.


Subject(s)
Alzheimer Disease/drug therapy , Aminoquinolines/pharmacology , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Heterocyclic Compounds, 4 or More Rings/pharmacology , Neuroprotective Agents/pharmacology , Alzheimer Disease/metabolism , Aminoquinolines/chemical synthesis , Aminoquinolines/chemistry , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Aspartic Acid Endopeptidases/metabolism , Brain/metabolism , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Heterocyclic Compounds, 4 or More Rings/chemical synthesis , Heterocyclic Compounds, 4 or More Rings/chemistry , Humans , Molecular Dynamics Simulation , Molecular Structure , Neuroprotective Agents/chemical synthesis , Recombinant Proteins/metabolism , Structure-Activity Relationship , tau Proteins/antagonists & inhibitors , tau Proteins/metabolism
4.
Front Mol Biosci ; 8: 697586, 2021.
Article in English | MEDLINE | ID: mdl-34195230

ABSTRACT

Targeting protein-protein interactions (PPIs) has been recently recognized as an emerging therapeutic approach for several diseases. Up today, more than half a million PPI dysregulations have been found to be involved in pathological events. The dynamic nature of these processes and the involvement of large protein surfaces discouraged anyway the scientific community in considering them promising therapeutic targets. More recently peptide drugs received renewed attention since drug discovery has offered a broad range of structural diverse sequences, moving from traditionally endogenous peptides to sequences possessing improved pharmaceutical profiles. About 70 peptides are currently on the marked but several others are in clinical development. In this review we want to report the update on these novel APIs, focusing our attention on the molecules in clinical development, representing the direct consequence of the drug discovery process of the last 10 years. The comprehensive collection will be classified in function of the structural characteristics (native, analogous, heterologous) and on the basis of the therapeutic targets. The mechanism of interference on PPI will also be reported to offer useful information for novel peptide design.

5.
ChemSusChem ; 14(12): 2591-2600, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-33905170

ABSTRACT

The identification of a green, versatile, user-friendly, and efficient methodology is necessary to facilitate the use of Heck-Cassar-Sonogashira (HCS) cross-coupling reaction in drug discovery and industrial production in the pharmaceutical segment. The Heck-Cassar and Sonogashira protocols, using N-hydroxyethylpyrrolidone (HEP)/water/N,N,N',N'-tetramethyl guanidine (TMG) as green solvent/base mixture and sulfonated phosphine ligands, allowed to recycle the catalyst, always guaranteeing high yields and fast conversion under mild conditions, with aryl iodides, bromides, and triflates. No catalyst leakage or metal contamination of the final product were observed during the HCS recycling. To our knowledge, a turnover number (TON) up to 2375, a turnover frequency (TOF) of 158 h-1 , and a process mass intensity (PMI) around 7 that decreased around 3 after solvent, base, and palladium recovery, represent one of the best results to date using a sustainable protocol. The Heck-Cassar protocol using sSPhos was successfully applied to the telescoped synthesis of Erlotinib (TON: 1380; TOF: 46 h-1 ).

6.
J Pharm Biomed Anal ; 191: 113584, 2020 Nov 30.
Article in English | MEDLINE | ID: mdl-32889349

ABSTRACT

Ampicillin, discovered in 1958, was the first broad spectrum semisynthetic penicillin introduced into the market. Despite its wide use not all the impurities have been identified to date. Herein, the last unknown impurity present in commercially available medicines was isolated and identified. This impurity that accounts up to 0.8 in area % by HPLC (EP 10.0) in the Reference Listed Drugs (RLD) was characterized and identified to be the 16-keto penicillin G. The structure was confirmed by comparison with a chemically synthesized sample. The determination of the Relative Response Factor (RRF) of the impurity respect to the parent drug allowed to recalculate the real amount that is consistently below the reporting threshold.


Subject(s)
Ampicillin , Drug Contamination , Chromatography, High Pressure Liquid , Penicillins
SELECTION OF CITATIONS
SEARCH DETAIL
...