Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(1): eadi9171, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38181074

ABSTRACT

Reducing the form factor while retaining the radiation hardness and performance matrix is the goal of avionics. While a compromise between a transistor's size and its radiation hardness has reached consensus in microelectronics, the size-performance balance for their optical counterparts has not been quested but eventually will limit the spaceborne photonic instruments' capacity to weight ratio. Here, we performed space experiments of photonic integrated circuits (PICs), revealing the critical roles of energetic charged particles. The year-long cosmic radiation exposure does not change carrier mobility but reduces free carrier lifetime, resulting in unchanged electro-optic modulation efficiency and well-expanded optoelectronic bandwidth. The diversity and statistics of the tested PIC modulator indicate the minimal requirement of shielding for PIC transmitters with small footprint modulators and complexed routing waveguides toward lightweight space terminals for terabits communications and intersatellite ranging.

2.
Phys Rev Lett ; 131(22): 225201, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38101349

ABSTRACT

A novel multispacecraft technique applied to Magnetospheric Multiscale Mission data in the Earth's magnetosheath enables evaluation of the energy cascade rate from the full Yaglom's equation. The method differs from existing approaches in that it (i) is inherently three-dimensional, (ii) provides a statistically significant number of estimates from a single data stream, and (iii) allows visualization of energy flux in turbulent plasmas. This new "lag polyhedral derivative ensemble" technique exploits ensembles of tetrahedra in lag space and established curlometerlike algorithms.

3.
Rev Mod Plasma Phys ; 6(1): 41, 2022.
Article in English | MEDLINE | ID: mdl-36437822

ABSTRACT

The solar wind, a continuous flow of plasma from the sun, not only shapes the near Earth space environment but also serves as a natural laboratory to study plasma turbulence in conditions that are not achievable in the lab. Starting with the Mariners, for more than five decades, multiple space missions have enabled in-depth studies of solar wind turbulence. Parker Solar Probe (PSP) was launched to explore the origins and evolution of the solar wind. With its state-of-the-art instrumentation and unprecedented close approaches to the sun, PSP is starting a new era of inner heliospheric exploration. In this review we discuss observations of turbulent energy flow across scales in the inner heliosphere as observed by PSP. After providing a quick theoretical overview and a quick recap of turbulence before PSP, we discuss in detail the observations of energy at various scales on its journey from the largest scales to the internal degrees of freedom of the plasma. We conclude with some open ended questions, many of which we hope that PSP will help answer.

4.
Phys Rev Lett ; 124(25): 255101, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32639771

ABSTRACT

A familiar problem in space and astrophysical plasmas is to understand how dissipation and heating occurs. These effects are often attributed to the cascade of broadband turbulence which transports energy from large scale reservoirs to small scale kinetic degrees of freedom. When collisions are infrequent, local thermodynamic equilibrium is not established. In this case the final stage of energy conversion becomes more complex than in the fluid case, and both pressure-dilatation and pressure strain interactions (Pi-D≡-Π_{ij}D_{ij}) become relevant and potentially important. Pi-D in plasma turbulence has been studied so far primarily using simulations. The present study provides a statistical analysis of Pi-D in the Earth's magnetosheath using the unique measurement capabilities of the Magnetospheric Multiscale (MMS) mission. We find that the statistics of Pi-D in this naturally occurring plasma environment exhibit strong resemblance to previously established fully kinetic simulations results. The conversion of energy is concentrated in space and occurs near intense current sheets, but not within them. This supports recent suggestions that the chain of energy transfer channels involves regional, rather than pointwise, correlations.

5.
Phys Rev Lett ; 124(22): 225101, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32567898

ABSTRACT

We present estimates of the turbulent energy-cascade rate derived from a Hall-magnetohydrodynamic (MHD) third-order law. We compute the contribution from the Hall term and the MHD term to the energy flux. Magnetospheric Multiscale (MMS) data accumulated in the magnetosheath and the solar wind are compared with previously established simulation results. Consistent with the simulations, we find that at large (MHD) scales, the MMS observations exhibit a clear inertial range dominated by the MHD flux. In the subion range, the cascade continues at a diminished level via the Hall term, and the change becomes more pronounced as the plasma beta increases. Additionally, the MHD contribution to interscale energy transfer remains important at smaller scales than previously thought. Possible reasons are offered for this unanticipated result.

6.
Phys Rev E ; 97(5-1): 053211, 2018 May.
Article in English | MEDLINE | ID: mdl-29906872

ABSTRACT

Based on the Langevin equation of Brownian motion, we present a simple model that emulates a typical mode in incompressible magnetohydrodynamic turbulence, providing a demonstration of several key properties. The model equation is consistent with von Kármán decay law and Kolmogorov's symmetries. We primarily focus on the behavior of inertial range modes, although we also attempt to include some properties of the large-scale modes. Dissipation scales are not considered. Results from the model are compared with results from published direct numerical simulations.

7.
Phys Rev E ; 93(6): 061102, 2016 06.
Article in English | MEDLINE | ID: mdl-27415197

ABSTRACT

We investigate energy transfer across scales in three-dimensional compressible magnetohydrodynamic (MHD) turbulence, a model often used to study space and astrophysical plasmas. Analysis shows that kinetic and magnetic energies cascade conservatively from large to small scales in cases with varying degrees of compression. With more compression, energy fluxes due to pressure dilation and subscale mass flux are greater, but conversion between kinetic and magnetic energy by magnetic line stretching is less efficient. Energy transfer between the same fields is dominated by local contributions regardless of compressive effects. In contrast, the conversion between kinetic and internal energy by pressure dilation is dominated by the largest scale contributions. Energy conversion between the velocity and magnetic fields is weakly local.

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 69(5 Pt 2): 056407, 2004 May.
Article in English | MEDLINE | ID: mdl-15244951

ABSTRACT

In helical hydromagnetic turbulence with an imposed magnetic field (which is constant in space and time) the magnetic helicity of the field within a periodic domain is no longer an invariant of the ideal equations. Alternatively, there is a generalized magnetic helicity that is an invariant of the ideal equations. It is shown that this quantity is not gauge invariant and that it can therefore not be used in practice. Instead, the evolution equation of the magnetic helicity of the field describing the deviation from the imposed field is shown to be a useful tool. It is demonstrated that this tool can determine steady state quenching of the alpha-effect. A simple three-scale model is derived to describe the evolution of the magnetic helicity and to predict its sign as a function of the imposed field strength. The results of the model agree favorably with simulations.

SELECTION OF CITATIONS
SEARCH DETAIL
...