Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Behav Evol ; 94(1-4): 61-70, 2019.
Article in English | MEDLINE | ID: mdl-31747669

ABSTRACT

Echolocating bats evolved a sophisticated biosonar imaging system that allows for a life in dim-light habitats. However, especially for far-range operations such as homing, bats can support biosonar by vision. Large eyes and a retina that mainly consists of rods are assumed to be the optical adjustments that enable bats to use visual information at low light levels. In addition to optical mechanisms, many nocturnal animals evolved neural adaptations such as elongated integration times or enlarged spatial sampling areas to further increase the sensitivity of their visual system by temporal or spatial summation of visual information. The neural mechanisms that underlie the visual capabilities of echolocating bats have, however, so far not been investigated. To shed light on spatial and temporal response characteristics of visual neurons in an echolocating bat, Phyllostomus discolor, we recorded extracellular multiunit activity in the retino-recipient superficial layers of the superior colliculus (SC). We discovered that response latencies of these neurons were generally in the mammalian range, whereas neural spatial sampling areas were unusually large compared to those measured in the SC of other mammals. From this we suggest that echolocating bats likely use spatial but not temporal summation of visual input to improve visual performance under dim-light conditions. Furthermore, we hypothesize that bats compensate for the loss of visual spatial precision, which is a byproduct of spatial summation, by integration of spatial information provided by both the visual and the biosonar systems. Given that knowledge about neural adaptations to dim-light vision is mainly based on studies done in non-mammalian species, our novel data provide a valuable contribution to the field and demonstrate the suitability of echolocating bats as a nocturnal animal model to study the neurophysiological aspects of dim-light vision.


Subject(s)
Chiroptera/physiology , Echolocation/physiology , Vision, Ocular/physiology , Animals , Female , Male , Neurons/physiology , Spatial Processing/physiology , Superior Colliculi/physiology
2.
Eur J Neurosci ; 44(9): 2685-2697, 2016 11.
Article in English | MEDLINE | ID: mdl-27600873

ABSTRACT

The midbrain superior colliculus (SC) commonly features a retinotopic representation of visual space in its superficial layers, which is congruent with maps formed by multisensory neurons and motor neurons in its deep layers. Information flow between layers is suggested to enable the SC to mediate goal-directed orienting movements. While most mammals strongly rely on vision for orienting, some species such as echolocating bats have developed alternative strategies, which raises the question how sensory maps are organized in these animals. We probed the visual system of the echolocating bat Phyllostomus discolor and found that binocular high acuity vision is frontally oriented and thus aligned with the biosonar system, whereas monocular visual fields cover a large area of peripheral space. For the first time in echolocating bats, we could show that in contrast with other mammals, visual processing is restricted to the superficial layers of the SC. The topographic representation of visual space, however, followed the general mammalian pattern. In addition, we found a clear topographic representation of sound azimuth in the deeper collicular layers, which was congruent with the superficial visual space map and with a previously documented map of orienting movements. Especially for bats navigating at high speed in densely structured environments, it is vitally important to transfer and coordinate spatial information between sensors and motor systems. Here, we demonstrate first evidence for the existence of congruent maps of sensory space in the bat SC that might serve to generate a unified representation of the environment to guide motor actions.


Subject(s)
Auditory Perception , Echolocation , Superior Colliculi/physiology , Visual Perception , Animals , Chiroptera
3.
Psychoneuroendocrinology ; 70: 85-97, 2016 08.
Article in English | MEDLINE | ID: mdl-27179233

ABSTRACT

A dysregulation of the hypothalamus-pituitary-adrenocortical (HPA) axis and the experience of early-life adversity are both well-established risk factors for the development of affective disorders, such as major depression. However, little is known about the interaction of these two factors in shaping endophenotypes of the disease. Here, we studied the gene-environment interaction of a genetic predisposition for HPA axis dysregulation with early-life stress (ELS), assessing the short-, as well as the long-lasting consequences on emotional behavior, neuroendocrine functions and gene expression profiles. Three mouse lines, selectively bred for either high (HR), intermediate (IR), or low (LR) HPA axis reactivity, were exposed to one week of ELS using the limited nesting and bedding material paradigm. Measurements collected during or shortly after the ELS period showed that, regardless of genetic background, ELS exposure led to impaired weight gain and altered the animals' coping behavior under stressful conditions. However, only HR mice additionally showed significant changes in neuroendocrine stress responsiveness at a young age. Accordingly, adult HR mice also showed lasting consequences of ELS, including hyperactive stress-coping, HPA axis hyperreactivity, and gene expression changes in the Crh system, as well as downregulation of Fkbp5 in relevant brain regions. We suggest that the genetic predisposition for high stress reactivity interacts with ELS exposure by disturbing the suppression of corticosterone release during a critical period of brain development, thus exerting lasting programming effects on the HPA axis, presumably via epigenetic mechanisms. In concert, these changes lead to the emergence of important endophenotypes associated with affective disorders.


Subject(s)
Depressive Disorder, Major/genetics , Mood Disorders/genetics , Stress, Psychological/genetics , Adaptation, Psychological , Animals , Brain/metabolism , Corticosterone/metabolism , Depressive Disorder, Major/metabolism , Disease Models, Animal , Emotions , Endophenotypes/metabolism , Female , Gene-Environment Interaction , Genetic Predisposition to Disease , Hypothalamo-Hypophyseal System/metabolism , Male , Mice , Mood Disorders/metabolism , Neurosecretory Systems/metabolism , Pituitary-Adrenal System/metabolism , Pregnancy , Random Allocation , Stress, Psychological/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...