Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 212
Filter
1.
J Extracell Biol ; 3(2): e138, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38939900

ABSTRACT

Extracellular vesicles (EVs) are cell derived membranous nanoparticles. EVs are important mediators of cell-cell communication via the transfer of bioactive content and as such they are being investigated for disease diagnostics as biomarkers and for potential therapeutic cargo delivery to recipient cells. However, existing methods for isolating EVs from biological samples suffer from challenges related to co-isolation of unwanted materials such as proteins, nucleic acids, and lipoproteins. In the pursuit of improved EV isolation techniques, we introduce multimodal flowthrough chromatography (MFC) as a scalable alternative to size exclusion chromatography (SEC). The use of MFC offers significant advantages for purifying EVs, resulting in enhanced yields and increased purity with respect to protein and nucleic acid co-isolates from conditioned 3D cell culture media. Compared to SEC, significantly higher EV yields with similar purity and preserved functionality were also obtained with MFC in 2D cell cultures. Additionally, MFC yielded EVs from serum with comparable purity to SEC and similar apolipoprotein B content. Overall, MFC presents an advancement in EV purification yielding EVs with high recovery, purity, and functionality, and offers an accessible improvement to researchers currently employing SEC.

2.
Science ; 384(6693): 321-325, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38635707

ABSTRACT

The difficulty in characterizing the complex structures of nanoporous carbon electrodes has led to a lack of clear design principles with which to improve supercapacitors. Pore size has long been considered the main lever to improve capacitance. However, our evaluation of a large series of commercial nanoporous carbons finds a lack of correlation between pore size and capacitance. Instead, nuclear magnetic resonance spectroscopy measurements and simulations reveal a strong correlation between structural disorder in the electrodes and capacitance. More disordered carbons with smaller graphene-like domains show higher capacitances owing to the more efficient storage of ions in their nanopores. Our findings suggest ways to understand and exploit disorder to achieve highly energy-dense supercapacitors.

3.
Molecules ; 29(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38611800

ABSTRACT

4-Chloroisocoumarin compounds have broad inhibitory properties against serine proteases. Here, we show that selected 3-alkoxy-4-chloroisocoumarins preferentially inhibit the activity of the conserved serine protease High-temperature requirement A of Chlamydia trachomatis. The synthesis of a new series of isocoumarin-based scaffolds has been developed, and their anti-chlamydial properties were investigated. The structure of the alkoxy substituent was found to influence the potency of the compounds against High-temperature requirement A, and modifications to the C-7 position of the 3-alkoxy-4-chloroisocoumarin structure attenuate anti-chlamydial properties.


Subject(s)
Alcohols , Chlamydia trachomatis , Protease Inhibitors , Protease Inhibitors/pharmacology , Enzyme Therapy , Isocoumarins , Serine Endopeptidases , Serine Proteases
4.
J Bacteriol ; 206(4): e0037123, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38445896

ABSTRACT

Chlamydia trachomatis is an intracellular bacterial pathogen that undergoes a biphasic developmental cycle, consisting of intracellular reticulate bodies and extracellular infectious elementary bodies. A conserved bacterial protease, HtrA, was shown previously to be essential for Chlamydia during the reticulate body phase, using a novel inhibitor (JO146). In this study, isolates selected for the survival of JO146 treatment were found to have polymorphisms in the acyl-acyl carrier protein synthetase gene (aasC). AasC encodes the enzyme responsible for activating fatty acids from the host cell or synthesis to be incorporated into lipid bilayers. The isolates had distinct lipidomes with varied fatty acid compositions. A reduction in the lipid compositions that HtrA prefers to bind to was detected, yet HtrA and MOMP (a key outer membrane protein) were present at higher levels in the variants. Reduced progeny production and an earlier cellular exit were observed. Transcriptome analysis identified that multiple genes were downregulated in the variants especially stress and DNA processing factors. Here, we have shown that the fatty acid composition of chlamydial lipids, HtrA, and membrane proteins interplay and, when disrupted, impact chlamydial stress response that could trigger early cellular exit. IMPORTANCE: Chlamydia trachomatis is an important obligate intracellular pathogen that has a unique biphasic developmental cycle. HtrA is an essential stress or virulence protease in many bacteria, with many different functions. Previously, we demonstrated that HtrA is critical for Chlamydia using a novel inhibitor. In the present study, we characterized genetic variants of Chlamydia trachomatis with reduced susceptibility to the HtrA inhibitor. The variants were changed in membrane fatty acid composition, outer membrane proteins, and transcription of stress genes. Earlier and more synchronous cellular exit was observed. Combined, this links stress response to fatty acids, membrane proteins, and HtrA interplay with the outcome of disrupted timing of chlamydial cellular exit.


Subject(s)
Chlamydia trachomatis , Fatty Acids , Chlamydia trachomatis/genetics , Fatty Acids/metabolism , Membrane Proteins/metabolism , Cell Line , Peptide Hydrolases/metabolism , Bacterial Proteins/genetics
5.
Hum Mol Genet ; 33(5): 400-425, 2024 Feb 18.
Article in English | MEDLINE | ID: mdl-37947217

ABSTRACT

Spinal muscular atrophy (SMA) is a genetic neuromuscular disorder caused by the reduction of survival of motor neuron (SMN) protein levels. Although three SMN-augmentation therapies are clinically approved that significantly slow down disease progression, they are unfortunately not cures. Thus, complementary SMN-independent therapies that can target key SMA pathologies and that can support the clinically approved SMN-dependent drugs are the forefront of therapeutic development. We have previously demonstrated that prednisolone, a synthetic glucocorticoid (GC) improved muscle health and survival in severe Smn-/-;SMN2 and intermediate Smn2B/- SMA mice. However, long-term administration of prednisolone can promote myopathy. We thus wanted to identify genes and pathways targeted by prednisolone in skeletal muscle to discover clinically approved drugs that are predicted to emulate prednisolone's activities. Using an RNA-sequencing, bioinformatics, and drug repositioning pipeline on skeletal muscle from symptomatic prednisolone-treated and untreated Smn-/-; SMN2 SMA and Smn+/-; SMN2 healthy mice, we identified molecular targets linked to prednisolone's ameliorative effects and a list of 580 drug candidates with similar predicted activities. Two of these candidates, metformin and oxandrolone, were further investigated in SMA cellular and animal models, which highlighted that these compounds do not have the same ameliorative effects on SMA phenotypes as prednisolone; however, a number of other important drug targets remain. Overall, our work further supports the usefulness of prednisolone's potential as a second-generation therapy for SMA, identifies a list of potential SMA drug treatments and highlights improvements for future transcriptomic-based drug repositioning studies in SMA.


Subject(s)
Drug Repositioning , Muscular Atrophy, Spinal , Mice , Animals , Pharmaceutical Preparations , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Muscle, Skeletal/metabolism , Gene Expression Profiling , Prednisolone/therapeutic use , Disease Models, Animal , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 1 Protein/metabolism
6.
Cells ; 12(18)2023 09 15.
Article in English | MEDLINE | ID: mdl-37759507

ABSTRACT

Interleukin-6 (IL-6) is a pleiotropic cytokine that plays a crucial role in maintaining normal homeostatic processes under the pathogenesis of various inflammatory and autoimmune diseases. This context-dependent effect from a cytokine is due to two distinctive forms of signaling: cis-signaling and trans-signaling. IL-6 cis-signaling involves binding IL-6 to the membrane-bound IL-6 receptor and Glycoprotein 130 (GP130) signal-transducing subunit. By contrast, in IL-6 trans-signaling, complexes of IL-6 and the soluble form of the IL-6 receptor (sIL-6R) signal via membrane-bound GP130. Various strategies have been employed in the past decade to target the pro-inflammatory effect of IL-6 in numerous inflammatory disorders. However, their development has been hindered since these approaches generally target global IL-6 signaling, also affecting the anti-inflammatory effects of IL-6 signaling too. Therefore, novel strategies explicitly targeting the pro-inflammatory IL-6 trans-signaling without affecting the IL-6 cis-signaling are required and carry immense therapeutic potential. Here, we have developed a novel approach to specifically decoy IL-6-mediated trans-signaling by modulating alternative splicing in GP130, an IL-6 signal transducer, by employing splice switching oligonucleotides (SSO), to induce the expression of truncated soluble isoforms of the protein GP130. This isoform is devoid of signaling domains but allows for specifically sequestering the IL-6/sIL-6R receptor complex with high affinity in serum and thereby suppressing inflammation. Using the state-of-the-art Pip6a cell-penetrating peptide conjugated to PMO-based SSO targeting GP130 for efficient in vivo delivery, reduced disease phenotypes in two different inflammatory mouse models of systemic and intestinal inflammation were observed. Overall, this novel gene therapy platform holds great potential as a refined therapeutic intervention for chronic inflammatory diseases.


Subject(s)
Cytokines , Interleukin-6 , Animals , Mice , Cytokine Receptor gp130 , Inflammation , Oligonucleotides
7.
Mol Ther Nucleic Acids ; 33: 511-528, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37602275

ABSTRACT

Extracellular vesicles (EVs) have been implicated in the regulation of myogenic differentiation. C2C12 murine myoblast differentiation was reduced following treatment with GW4869 or heparin (to inhibit exosome biogenesis and EV uptake, respectively). Conversely, treatment with C2C12 myotube-conditioned medium enhanced myogenic differentiation. Ultrafiltration-size exclusion liquid chromatography (UF-SEC) was used to isolate EVs and non-EV extracellular protein in parallel from C2C12 myoblast- and myotube-conditioned medium. UF-SEC-purified EVs promoted myogenic differentiation at low doses (≤2 × 108 particles/mL) and were inhibitory at the highest dose tested (2 × 1011 particles/mL). Conversely, extracellular protein fractions had no effect on myogenic differentiation. While the transfer of muscle-enriched miRNAs (myomiRs) has been proposed to mediate the pro-myogenic effects of EVs, we observed that they are scarce in EVs (e.g., 1 copy of miR-133a-3p per 195 EVs). Furthermore, we observed pro-myogenic effects with undifferentiated myoblast-derived EVs, in which myomiR concentrations are even lower, suggestive of a myomiR-independent mechanism underlying the observed pro-myogenic effects. During these investigations we identified technical factors with profound confounding effects on myogenic differentiation. Specifically, co-purification of insulin (a component of Opti-MEM) in non-EV LC fractions and polymer precipitated EV preparations. These findings provide further evidence that polymer-based precipitation techniques should be avoided in EV research.

8.
Small ; 19(50): e2303403, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37649230

ABSTRACT

Metal-organic frameworks (MOFs) have emerged as promising novel therapeutics for treating malignancies due to their tunable porosity, biocompatibility, and modularity to functionalize with various chemotherapeutics drugs. However, the design and synthesis of dual-stimuli responsive MOFs for controlled drug release in tumor microenvironments are vitally essential but still challenging. Meanwhile, the catalytic effect of metal ions selection and ratio optimization in MOFs for enhanced chemodynamic therapy (CDT) is relatively unexplored. Herein, a series of MnFe-based MOFs with pH/glutathione (GSH)-sensitivity are synthesized and then combined with gold nanoparticles (Au NPs) and cisplatin prodrugs (DSCP) as a cascade nanoreactor (SMnFeCGH) for chemo-chemodynamic-starvation synergistic therapy. H+ and GSH can specifically activate the optimal SMnFeCGH nanoparticles in cancer cells to release Mn2+/4+ /Fe2+/3+ , Au NPs, and DSCP rapidly. The optimal ratio of Mn/Fe shows excellent H2 O2 decomposition efficiency for accelerating CDT. Au NPs can cut off the energy supply to cancer cells for starvation therapy and strengthen CDT by providing large amounts of H2 O2 . Then H2 O2 is catalyzed by Mn2+ /Fe2+ to generate highly toxic •OH with the depletion of GSH. Meanwhile, the reduced DSCP accelerates cancer cell regression for chemotherapy. The ultrasensitivity cascade nanoreactor can enhance the anticancer therapeutic effect by combining chemotherapy, CDT, and starvation therapy.


Subject(s)
Metal Nanoparticles , Metal-Organic Frameworks , Nanoparticles , Neoplasms , Humans , Gold , Glutathione , Tumor Microenvironment , Nanotechnology , Hydrogen-Ion Concentration , Neoplasms/drug therapy , Cell Line, Tumor , Hydrogen Peroxide
9.
Nat Rev Drug Discov ; 22(11): 917-934, 2023 11.
Article in English | MEDLINE | ID: mdl-37652974

ABSTRACT

Duchenne muscular dystrophy (DMD) is a monogenic muscle-wasting disorder and a priority candidate for molecular and cellular therapeutics. Although rare, it is the most common inherited myopathy affecting children and so has been the focus of intense research activity. It is caused by mutations that disrupt production of the dystrophin protein, and a plethora of drug development approaches are under way that aim to restore dystrophin function, including exon skipping, stop codon readthrough, gene replacement, cell therapy and gene editing. These efforts have led to the clinical approval of four exon skipping antisense oligonucleotides, one stop codon readthrough drug and one gene therapy product, with other approvals likely soon. Here, we discuss the latest therapeutic strategies that are under development and being deployed to treat DMD. Lessons from these drug development programmes are likely to have a major impact on the DMD field, but also on molecular and cellular medicine more generally. Thus, DMD is a pioneer disease at the forefront of future drug discovery efforts, with these experimental treatments paving the way for therapies using similar mechanisms of action being developed for other genetic diseases.


Subject(s)
Muscular Dystrophy, Duchenne , Child , Humans , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/genetics , Dystrophin/genetics , Codon, Terminator , Oligonucleotides, Antisense/therapeutic use , Oligonucleotides, Antisense/genetics , Mutation
10.
Nanoscale Adv ; 5(11): 2941-2949, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37260495

ABSTRACT

Nucleic acid therapeutics require delivery systems to reach their targets. Key challenges to be overcome include avoidance of accumulation in cells of the mononuclear phagocyte system and escape from the endosomal pathway. Spherical nucleic acids (SNAs), in which a gold nanoparticle supports a corona of oligonucleotides, are promising carriers for nucleic acids with valuable properties including nuclease resistance, sequence-specific loading and control of receptor-mediated endocytosis. However, SNAs accumulate in the endosomal pathway and are thus vulnerable to lysosomal degradation or recycling exocytosis. Here, an alternative SNA core based on diblock copolymer PMPC25-PDPA72 is investigated. This pH-sensitive polymer self-assembles into vesicles with an intrinsic ability to escape endosomes via osmotic shock triggered by acidification-induced disassembly. DNA oligos conjugated to PMPC25-PDPA72 molecules form vesicles, or polymersomes, with DNA coronae on luminal and external surfaces. Nucleic acid cargoes or nucleic acid-tagged targeting moieties can be attached by hybridization to the coronal DNA. These polymeric SNAs are used to deliver siRNA duplexes against C9orf72, a genetic target with therapeutic potential for amyotrophic lateral sclerosis, to motor neuron-like cells. By attaching a neuron-specific targeting peptide to the PSNA corona, effective knock-down is achieved at doses of 2 particles per cell.

11.
Int J Biol Macromol ; 239: 124363, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37031790

ABSTRACT

Strategies which are used to address the low levels of intracellular hydrogen peroxide and the development of biocompatible catalysts still need to be fulfilled in tumor chemodynamic therapy. Therefore, a novel tumor-targeted glycogen-based nanoparticle system (GN/He/GOx/HA) was developed to co-deliver hemin (He) and GOx, which can self-supply glucose formed upon degradation of glycogen by α-glycosidase in the lysosome environment, in order to achieve synergistic antitumor therapy. Hyaluronic acid (HA) was selected as the outer shell to protect the activity of GOx, and to increase the uptake by tumor cells via CD44 receptor-mediated endocytosis. GN/He/GOx/HA NPs had a good stability in the blood circulation, but fast release of the therapeutic cargos upon intracellular uptake. Hemin had a cascade catalytic reaction with GOx. Furthermore, GN/He/GOx/HA NPs had the strongest cytotoxicity in Hela cells in a glucose concentration dependent manner. The NPs could efficiently produce reactive oxygen species in tumor cells, resulting in a decrease in the mitochondrial membrane potential and apoptosis of tumor cells. The in vivo results showed that the drug-loaded nanoparticles had good safety, biocompatibility, and efficacious antitumor effect. Therefore, the glycogen-based nanoparticle delivery system provides potential application for self-enhancing CDT, which can be used for effective antitumor therapy.


Subject(s)
Antineoplastic Agents , Nanoparticles , Neoplasms , Humans , Antineoplastic Agents/pharmacology , HeLa Cells , Glucose Oxidase/metabolism , Hemin , Glycogen , Neoplasms/metabolism , Glucose , Hydrogen Peroxide/metabolism , Cell Line, Tumor
12.
Am J Pathol ; 193(6): 813-828, 2023 06.
Article in English | MEDLINE | ID: mdl-36871751

ABSTRACT

The principal mechanism underlying the reduced rate of protein synthesis in atrophied skeletal muscle is largely unknown. Eukaryotic elongation factor 2 kinase (eEF2k) impairs the ability of eukaryotic translation elongation factor 2 (eEF2) to bind to the ribosome via T56 phosphorylation. Perturbations in the eEF2k/eEF2 pathway during various stages of disuse muscle atrophy have been investigated utilizing a rat hind limb suspension (HS) model. Two distinct components of eEF2k/eEF2 pathway misregulation were demonstrated, observing a significant (P < 0.01) increase in eEF2k mRNA expression as early as 1-day HS and in eEF2k protein level after 3-day HS. We set out to determine whether eEF2k activation is a Ca2+-dependent process with involvement of Cav1.1. The ratio of T56-phosphorylated/total eEF2 was robustly elevated after 3-day HS, which was completely reversed by 1,2-bis (2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA-AM) and decreased by 1.7-fold (P < 0.05) by nifedipine. Transfection of C2C12 with cytomegalovirus promoter (pCMV)-eEF2k and administration with small molecules were used to modulate eEF2k and eEF2 activity. More importantly, pharmacologic enhancement of eEF2 phosphorylation induced phosphorylated ribosomal protein S6 kinase (T389) up-regulation and restoration of global protein synthesis in the HS rats. Taken together, the eEF2k/eEF2 pathway was up-regulated during disuse muscle atrophy involving calcium-dependent activation of eEF2k partly via Cav1.1. The study provides evidence, in vitro and in vivo, of the eEF2k/eEF2 pathway impact on ribosomal protein S6 kinase activity as well as protein expression of key atrophy biomarkers, muscle atrophy F-box/atrogin-1 and muscle RING finger-1.


Subject(s)
Elongation Factor 2 Kinase , Muscle, Skeletal , Rats , Animals , Elongation Factor 2 Kinase/genetics , Elongation Factor 2 Kinase/metabolism , Peptide Elongation Factor 2/genetics , Peptide Elongation Factor 2/metabolism , Phosphorylation , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Ribosomal Protein S6 Kinases/metabolism
13.
Int J Mol Sci ; 24(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36769018

ABSTRACT

Myotonic dystrophy type 1 (DM1) is one of the most common muscular dystrophies and can be potentially treated with antisense therapy decreasing mutant DMPK, targeting miRNAs or their binding sites or via a blocking mechanism for MBNL1 displacement from the repeats. Unconjugated antisense molecules are able to correct the disease phenotype in mouse models, but they show poor muscle penetration upon systemic delivery in DM1 patients. In order to overcome this challenge, research has focused on the improvement of the therapeutic window and biodistribution of antisense therapy using bioconjugation to lipids, cell penetrating peptides or antibodies. Antisense conjugates are able to induce the long-lasting correction of DM1 pathology at both molecular and functional levels and also efficiently penetrate hard-to-reach tissues such as cardiac muscle. Delivery to the CNS at clinically relevant levels remains challenging and the use of alternative administration routes may be necessary to ameliorate some of the symptoms experienced by DM1 patients. With several antisense therapies currently in clinical trials, the outlook for achieving a clinically approved treatment for patients has never looked more promising.


Subject(s)
Muscular Dystrophies , Myotonic Dystrophy , Mice , Animals , Myotonic Dystrophy/drug therapy , Myotonic Dystrophy/genetics , Tissue Distribution , Muscular Dystrophies/metabolism , Oligonucleotides, Antisense/pharmacology , Myocardium/metabolism
14.
J Control Release ; 354: 635-650, 2023 02.
Article in English | MEDLINE | ID: mdl-36634710

ABSTRACT

Mesenchymal stem cell-derived exosomes (MSC-Exos) have attracted much attention as a potential cell-free therapy for ulcerative colitis (UC), mainly due to their anti-inflammatory, tissue repair, and immunomodulatory properties. Although intravenous injection of MSC-Exos is able to improve UC to a certain extent, oral administration of exosomes is the preferred method to treat gastrointestinal diseases such as UC. However, exosomes contain proteins and nucleic acids that are vulnerable to degradation by the gastrointestinal environment, making oral administration difficult to implement. Layer-by-layer (LbL) self-assembly technology provides a promising strategy for the oral delivery of exosomes. Therefore, an efficient LbL-Exos self-assembly system was constructed in this study for the oral delivery of exosomes targeted to the colon to improve UC treatment. Biocompatible and biodegradable N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC) and oxidized konjac glucomannan (OKGM) polysaccharides were used as the outer layers to provide colon targeting and to protect exosomes from degradation. Similar to plain exosomes, LbL-Exos had a similar structure and features, but LbL provided controlled release of exosomes in the inflammatory colon. Compared with intravenous administration, oral administration of LbL-Exos could effectively alleviate UC using half the number of exosomes. Mechanistic studies showed that LbL-Exos were internalized by macrophages and intestinal epithelial cells to exert anti-inflammatory and tissue repair effects and therefore alleviate UC. Furthermore, the LbL-Exos system was able to improve UC via MAPK/NF-κB signaling pathway inhibition. Overall, our data show that LbL-MSC-Exos can alleviate UC after oral administration and therefore may constitute a new strategy for UC treatment in the future.


Subject(s)
Colitis, Ulcerative , Exosomes , Humans , Exosomes/metabolism , Signal Transduction , NF-kappa B/metabolism , Wound Healing
15.
Methods Mol Biol ; 2587: 209-237, 2023.
Article in English | MEDLINE | ID: mdl-36401033

ABSTRACT

Antisense oligonucleotides (ASOs) have shown great therapeutic potential in the treatment of many neuromuscular diseases including myotonic dystrophy 1 (DM1). However, systemically delivered ASOs display poor biodistribution and display limited penetration into skeletal muscle. The conjugation of cell-penetrating peptides (CPPs) to phosphorodiamidate morpholino oligonucleotides (PMOs), a class of ASOs with a modified backbone, can be used to enhance ASO skeletal muscle penetration. Peptide-PMOs (P-PMOs) have been shown to be highly effective in correcting the DM1 skeletal muscle phenotype in both murine and cellular models of DM1 and at a molecular and functional level. Here we describe the synthesis and conjugation of P-PMOs and methods for analyzing their biodistribution and toxicity in the HSA-LR DM1 mouse model and their efficacy both in vitro and in vivo using FISH and RT-PCR splicing analysis.


Subject(s)
Cell-Penetrating Peptides , Myotonic Dystrophy , Mice , Animals , Morpholinos/genetics , Morpholinos/therapeutic use , Morpholinos/chemistry , Myotonic Dystrophy/genetics , Myotonic Dystrophy/therapy , Tissue Distribution , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/therapeutic use , Cell-Penetrating Peptides/chemistry
16.
Acta Biomater ; 158: 734-746, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36563772

ABSTRACT

Methods capable of distributing antitumour therapeutics uniformly throughout an entire tumour and that can suppress metastasis at the same time, would be of great significance in improving cancer treatment. Bacteria-mediated synergistic therapies have been explored for better specificity, temporal and spatial controllability, as well for providing regulation of the immune microenvironment, in order to provide improved cancer treatment. To achieve this goal, here we developed an engineered bacteria delivery system (GDOX@HSEc) using synthetic biology and interfacial chemistry technologies. The engineered bacteria were concurrently modified to express heparin sulfatase 1 (HSulf-1) inside (HSEc), to attach doxorubicin-loaded glycogen nanoparticles (GDOX NPs) on their surface. Here we demonstrate that HSEc can actively target and colonise tumour sites resulting in HSulf-1 overexpression, thereby suppressing angiogenesis and metastasis. Simultaneously, the GDOX NPs were able to penetrate into tumour cells, leading to intracellular DNA damage. Our results confirmed that a combination of biotherapy and chemotherapy using GDOX@HSEc resulted in significant melanoma suppression in murine models, with reduced side effects. This study provides a powerful platform for the simultaneous delivery of biomacromolecules and chemotherapeutic drugs to tumours, representing an innovative strategy potentially more effective in treating solid tumours. STATEMENT OF SIGNIFICANCE: An original engineered bacteria-based system (GDOX@HSEc) was developed using synthetic biology and interfacial chemistry technologies to concurrently produce naturally occurring heparin sulfatase 1 (HSulf-1) inside and anchor doxorubicin-loaded glycogen nanoparticles on the surface. GDOX@HSEc allowed for combined local delivery of chemotherapeutic agents along with the enzymes and immunostimulatory bacterial adjuvants, which resulted in a synergistic action in the inhibition of tumour growth and metastasis. The study provides a potential therapeutic approach that allows therapeutic agents to be distributed in a spatiotemporally controllable manner in tumours for combinatorial enhanced therapy.


Subject(s)
Melanoma , Nanoparticles , Animals , Mice , Cell Line, Tumor , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Melanoma/drug therapy , Nanoparticles/chemistry , Sulfatases/therapeutic use , Tumor Microenvironment
17.
J Extracell Biol ; 2(3): e74, 2023 Mar.
Article in English | MEDLINE | ID: mdl-38938417

ABSTRACT

CD8+ T lymphocytes play vital roles in killing infected or deranged host cells, recruiting innate immune cells, and regulating other aspects of immune responses. Like any other cell, CD8+ T cells also produce extracellular particles. These include extracellular vesicles (EVs) and non-vesicular extracellular particles (NVEPs). T cell-derived EVs are proposed to mediate cell-to-cell signalling, especially in the context of inflammatory responses, autoimmunity, and infectious diseases. CD8+ T cells also produce supramolecular attack particles (SMAPs), which are in the same size range as EVs and mediate a component of T cell mediated killing. The isolation technique selected will have a profound effect on yield, purity, biochemical properties and function of T cell-derived particles; making it important to directly compare different approaches. In this study, we compared commonly used techniques (membrane spin filtration, ultracentrifugation, or size exclusion liquid chromatography) to isolate particles from activated human CD8+ T cells and validated our results by single-particle methods, including nanoparticle tracking analysis, flow cytometry, electron microscopy and super-resolution microscopy of the purified sample as well as bulk proteomics and lipidomics analyses to evaluate the quality and nature of enriched T cell-derived particles. Our results show that there is a trade-off between the yield and the quality of T cell-derived particles. Furthermore, the protein and lipid composition of the particles is dramatically impacted by the isolation technique applied. We conclude that from the techniques evaluated, size exclusion liquid chromatography offers the highest quality of T cell derived EVs and SMAPs with acceptable yields for compositional and functional studies.

18.
Med ; 3(11): 733-734, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36370693

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease primarily affecting motor neurons. Recently,1 Miller et al. presented phase 3 data for the RNase-H-recruiting antisense oligonucleotide (ASO) targeting superoxide dismutase 1 (SOD1) in ALS, which represents a step forward in the deployment of ASO therapeutics against CNS targets.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Humans , Amyotrophic Lateral Sclerosis/genetics , Ribonuclease H , Superoxide Dismutase-1/genetics , Superoxide Dismutase , Oligonucleotides, Antisense/therapeutic use
19.
Mol Ther Nucleic Acids ; 30: 379-397, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36420212

ABSTRACT

Duchenne muscular dystrophy (DMD) is the most prevalent inherited myopathy affecting children, caused by genetic loss of the gene encoding the dystrophin protein. Here we have investigated the use of the Staphylococcus aureus CRISPR-Cas9 system and a double-cut strategy, delivered using a pair of adeno-associated virus serotype 9 (AAV9) vectors, for dystrophin restoration in the severely affected dystrophin/utrophin double-knockout (dKO) mouse. Single guide RNAs were designed to excise Dmd exon 23, with flanking intronic regions repaired by non-homologous end joining. Exon 23 deletion was confirmed at the DNA level by PCR and Sanger sequencing, and at the RNA level by RT-qPCR. Restoration of dystrophin protein expression was demonstrated by western blot and immunofluorescence staining in mice treated via either intraperitoneal or intravenous routes of delivery. Dystrophin restoration was most effective in the diaphragm, where a maximum of 5.7% of wild-type dystrophin expression was observed. CRISPR treatment was insufficient to extend lifespan in the dKO mouse, and dystrophin was expressed in a within-fiber patchy manner in skeletal muscle tissues. Further analysis revealed a plethora of non-productive DNA repair events, including AAV genome integration at the CRISPR cut sites. This study highlights potential challenges for the successful development of CRISPR therapies in the context of DMD.

20.
Mol Ther Nucleic Acids ; 29: 955-968, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36159597

ABSTRACT

Therapies that restore dystrophin expression are presumed to correct Duchenne muscular dystrophy (DMD), with antisense-mediated exon skipping being the leading approach. Here we aimed to determine whether exon skipping using a peptide-phosphorodiamidate morpholino oligonucleotide (PPMO) conjugate results in dose-dependent restoration of uniform dystrophin localization, together with correction of putative DMD serum and muscle biomarkers. Dystrophin-deficient mdx mice were treated with a PPMO (Pip9b2-PMO) designed to induce Dmd exon 23 skipping at single, ascending intravenous doses (3, 6, or 12 mg/kg) and sacrificed 2 weeks later. Dose-dependent exon skipping and dystrophin protein restoration were observed, with dystrophin uniformly distributed at the sarcolemma of corrected myofibers at all doses. Serum microRNA biomarkers (i.e., miR-1a-3p, miR-133a-3p, miR-206-3p, miR-483-3p) and creatinine kinase levels were restored toward wild-type levels after treatment in a dose-dependent manner. All biomarkers were strongly anti-correlated with both exon skipping level and dystrophin expression. Dystrophin rescue was also strongly positively correlated with muscle stiffness (i.e., Young's modulus) as determined by atomic force microscopy (AFM) nanoindentation assay. These data demonstrate that PPMO-mediated exon skipping generates myofibers with uniform dystrophin expression and that both serum microRNA biomarkers and muscle AFM have potential utility as pharmacodynamic biomarkers of dystrophin restoration therapy in DMD.

SELECTION OF CITATIONS
SEARCH DETAIL
...