Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Affect Disord ; 295: 513-521, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34509066

ABSTRACT

BACKGROUND: In middle-aged adults with depression, cerebral vasodilatory reactivity is blunted; however, this has not been examined in treatment-naïve young adults with major depressive disorder (MDD). We tested the hypothesis that cerebrovascular reactivity would be blunted in young adults (18-30 yrs) with MDD compared to healthy non-depressed adults (HA) and would be attenuated to a greater extent in adults with symptomatic MDD (sMDD) compared to adults with MDD in remission (euthymic MDD; eMDD). METHODS: Sixteen adults with MDD [21±3yrs; n = 8 sMDD (6 women); n = 8 eMDD (5 women)] and 14 HA (22±3yrs; 9 women) participated. End-tidal carbon dioxide concentration (PETCO2; capnograph), beat-to-beat mean arterial pressure (MAP; finger photoplethysmography), middle cerebral artery blood velocity (MCAv; transcranial Doppler ultrasound), and internal carotid artery (ICA) diameter and blood velocity (Doppler ultrasound) were continuously measured during baseline and rebreathing-induced hypercapnia. Cerebrovascular reactivity was calculated as the relative increase in vascular conductance during hypercapnia. RESULTS: In adults with MDD, cerebrovascular reactivity in the MCA (∆39±9 HA vs. ∆31±13% MDD, p = 0.04), but not the ICA (∆36±24 HA vs. ∆34±18% MDD, p = 0.84), was blunted compared to HA. In the MCA, cerebrovascular reactivity was reduced in adults with sMDD compared to adults with eMDD (∆36±11 eMDD vs. ∆25±13% sMDD, p = 0.02). LIMITATIONS: The cross-sectional nature approach limits conclusions regarding the temporal nature of this link. CONCLUSION: These data indicate that MCA cerebrovascular reactivity is blunted in young adults with MDD and further modulated by current depressive symptomology, suggesting that the management of depressive symptomology may secondarily improve cerebrovascular health.


Subject(s)
Depressive Disorder, Major , Blood Flow Velocity , Carbon Dioxide , Cerebrovascular Circulation , Cross-Sectional Studies , Depressive Disorder, Major/diagnostic imaging , Female , Humans , Middle Aged , Middle Cerebral Artery/diagnostic imaging , Young Adult
2.
Microvasc Res ; 118: 1-6, 2018 07.
Article in English | MEDLINE | ID: mdl-29408444

ABSTRACT

It has been established that endothelial function in conduit vessels is reduced in young African Americans (AA) relative to Caucasian Americans (CA). However, less is known regarding endothelial function in microvasculature of young AA. We hypothesized that microvascular function in response to local heating of skin is attenuated in young AA relative to age-matched CA due largely to the lack of NO bioavailability, which is in turn improved by intradermal l-arginine supplementation and/or inhibition of arginase. Nine AA and nine CA adults participated in this study. Participants were instrumented with four microdialysis membranes in the cutaneous vasculature of one forearm and were randomly assigned to receive 1) lactated Ringer's solution as a control site; 2) 20 mM NG-nitro-l-arginine (l-NAME) to inhibit NO synthase activity; 3) 10 mM l-arginine to local supplement l-arginine; or 4) a combination of 5.0 mM (S)-(2­boronoethyl)-l-cysteine-HCL (BEC) and 5.0 mM Nω-hydroxy-nor-l-arginine (nor-NOHA) at a rate of 2.0 µl/min to locally inhibit arginase activity. Cutaneous vascular conductance (CVC) was calculated as red blood cell flux divided by mean arterial pressure. All CVC data were presented as a percentage of maximal CVC (%CVCmax) that was determined by maximal cutaneous vasodilation induced by 44 °C heating plus sodium nitroprusside administration. The response during the 42 °C local heating plateau was blunted in the AA at the control site (CA: 84 ±â€¯12 vs. AA: 62 ±â€¯6 vs. %CVCmax; P < 0.001). This response was improved in AA at the l-arginine site (Control: 62 ±â€¯6 vs. l-arginine: 70 ±â€¯18%CVCmax; P < 0.05) but not in the arginase inhibited site (Control: 62 ±â€¯6 vs. Arginase inhibited: 62 ±â€¯13%CVCmax; P = 0.91). In addition, the AA group had an attenuated NO contribution to the plateau phase during 42 °C local heating relative to the CA group (CA: 56 ±â€¯14 vs. AA: 44 ±â€¯6 Δ %CVCmax; P < 0.001). These findings suggest that 1) cutaneous microvascular function in response to local heating is blunted in young AA when compared to age-matched young CA; 2) this attenuated response is partly related to decrease in NO bioavailability in young AA; and 3) a local infusion of l-arginine, but not arginase inhibition, improves cutaneous microvascular responses to local heating in young AA relative to CA.


Subject(s)
Arginine/administration & dosage , Black or African American , Dietary Supplements , Microcirculation/drug effects , Microvessels/drug effects , Skin/blood supply , Vasodilation/drug effects , White People , Administration, Cutaneous , Adult , Arginine/metabolism , Cross-Sectional Studies , Female , Health Status Disparities , Humans , Hyperthermia, Induced , Iontophoresis , Male , Microvessels/metabolism , Microvessels/physiopathology , Nitric Oxide/metabolism , Texas , Young Adult
3.
J Eng Sci Med Diagn Ther ; 1(4): 0410071-410079, 2018 Nov.
Article in English | MEDLINE | ID: mdl-35832308

ABSTRACT

Cryotherapy is commonly used for the management of soft tissue injury. The dose effect of the applied cooling temperature has not been quantified previously. Six subjects were exposed during five different experiments to local skin temperatures of 16.6 °C, 19.8 °C, 24.7 °C, 27.3 °C, and 37.2 °C for 1 h of active heat transfer followed by 2 h of passive environmental interaction. Skin blood perfusion and temperature were measured continuously at treatment and control sites. All treatments resulted in significant changes in cutaneous vascular conductance (CVC, skin perfusion/mean arterial pressure) compared to baseline values. The drop in CVC for cooling to both 19.8 °C and 16.6 °C was significantly larger than for 27.3 °C (P < 0.05 and P < 0.0005, respectively). The depression of CVC for cooling to 16.6 °C was significantly larger than at 24.7 °C (P < 0.05). Active warming at 37.2 °C produced more than a twofold increase in CVC (P < 0.05). A simulation model was developed to describe the coupled effects of exposure time and temperature on skin perfusion. The model was applied to define an equivalent cooling dose defined by exposure time and temperature that produced equivalent changes in skin perfusion. The model was verified with data from 22 independent cryotherapy experiments. The equivalent doses were applied to develop a nomogram to identify therapeutic time and temperature combinations that would produce a targeted vascular response. The nomogram may be applied to design cryotherapy protocols that will yield a desired vascular response history that may combine the benefits of tissue temperature reduction while diminishing the risk of collateral ischemic injury.

4.
J Biomech Eng ; 138(3): 4032126, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26632263

ABSTRACT

The goal of this study was to investigate the persistence of cold-induced vasoconstriction following cessation of active skin-surface cooling. This study demonstrates a hysteresis effect that develops between skin temperature and blood perfusion during the cooling and subsequent rewarming period. An Arctic Ice cryotherapy unit (CTU) was applied to the knee region of six healthy subjects for 60 min of active cooling followed by 120 min of passive rewarming. Multiple laser Doppler flowmetry perfusion probes were used to measure skin blood flow (expressed as cutaneous vascular conductance (CVC)). Skin surface cooling produced a significant reduction in CVC (P < 0.001) that persisted throughout the duration of the rewarming period. In addition, there was a hysteresis effect between CVC and skin temperature during the cooling and subsequent rewarming cycle (P < 0.01). Mixed model regression (MMR) showed a significant difference in the slopes of the CVC-skin temperature curves during cooling and rewarming (P < 0.001). Piecewise regression was used to investigate the temperature thresholds for acceleration of CVC during the cooling and rewarming periods. The two thresholds were shown to be significantly different (P = 0.003). The results show that localized cooling causes significant vasoconstriction that continues beyond the active cooling period despite skin temperatures returning toward baseline values. The significant and persistent reduction in skin perfusion may contribute to nonfreezing cold injury (NFCI) associated with cryotherapy.


Subject(s)
Blood Circulation , Cryotherapy/adverse effects , Skin Temperature , Skin/blood supply , Vasoconstriction , Adult , Female , Humans , Male , Vasomotor System/physiology , Young Adult
5.
Am J Physiol Regul Integr Comp Physiol ; 307(7): R908-13, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25100073

ABSTRACT

Facial pallor is commonly observed at presyncope in humans, suggestive of reductions in facial skin blood flow (SkBF). Yet, cutaneous vasoconstriction is usually minimal at presyncope when measured at the forearm. We tested the hypothesis that reductions in forehead SkBF at presyncope are greater than in the forearm. Forehead and forearm SkBF (laser-Doppler) and blood pressure (Finometer or radial artery catheterization) were measured during lower body negative pressure (LBNP) to presyncope in 11 normothermic and 13 heat-stressed subjects (intestinal temperature increased ∼1.4°C). LBNP reduced mean arterial pressure from 91 ± 5 to 57 ± 7 mmHg during normothermia (P ≤ 0.001) and from 82 ± 5 to 57 ± 7 mmHg during heat stress (P ≤ 0.001). During normothermia, LBNP decreased forehead SkBF 55 ± 14% compared with 24 ± 11% at the forearm (P = 0.002), while during heat stress LBNP decreased forehead SkBF 39 ± 11% compared with 28 ± 8% in the forearm (P = 0.007). In both conditions, most (≥68%) of the decreases in SkBF were due to decreases in blood pressure. However, a greater contribution of actively mediated reductions in SkBF was observed at the forehead, relative to the forearm during normothermia (32 ± 13% vs. 11 ± 11%, P = 0.031) and heat stress (30 ± 13% vs. 10 ± 13%, P = 0.004). These data suggest that facial pallor at presyncope is due to a combination of passive decreases in forehead SkBF secondary to reductions in blood pressure and to active decreases in SkBF, the latter of which are relatively greater than in the forearm.


Subject(s)
Forearm/blood supply , Forehead/blood supply , Skin/blood supply , Syncope/physiopathology , Adult , Aged , Blood Pressure/physiology , Female , Humans , Lower Body Negative Pressure/methods , Male , Middle Aged , Regional Blood Flow/physiology , Skin Temperature/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...