Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Z Med Phys ; 32(3): 361-368, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34930685

ABSTRACT

PURPOSE: For image translational tasks, the application of deep learning methods showed that Generative Adversarial Network (GAN) architectures outperform the traditional U-Net networks, when using the same training data size. This study investigates whether this performance boost can also be expected for segmentation tasks with small training dataset size. MATERIALS/METHODS: Two models were trained on varying training dataset sizes ranging from 1-100 patients: a) U-Net and b) U-Net with patch discriminator (conditional GAN). The performance of both models to segment the male pelvis on CT-data was evaluated (Dice similarity coefficient, Hausdorff) with respect to training data size. RESULTS: No significant differences were observed between the U-Net and cGAN when the models were trained with the same training sizes up to 100 patients. The training dataset size had a significant impact on the models' performances, with vast improvements when increasing dataset sizes from 1 to 20 patients. CONCLUSION: When introducing GANs for the segmentation task no significant performance boost was observed in our experiments, even in segmentation models developed on small datasets.


Subject(s)
Image Processing, Computer-Assisted , Humans , Image Processing, Computer-Assisted/methods , Male , Pelvis/diagnostic imaging , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...