Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Rev Immunol ; 20(10): 591, 2020 10.
Article in English | MEDLINE | ID: mdl-32807860
2.
Immunity ; 49(4): 709-724.e8, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30291028

ABSTRACT

B cells thwart antigenic aggressions by releasing immunoglobulin M (IgM), IgG, IgA, and IgE, which deploy well-understood effector functions. In contrast, the role of secreted IgD remains mysterious. We found that some B cells generated IgD-secreting plasma cells following early exposure to external soluble antigens such as food proteins. Secreted IgD targeted basophils by interacting with the CD44-binding protein galectin-9. When engaged by antigen, basophil-bound IgD increased basophil secretion of interleukin-4 (IL-4), IL-5, and IL-13, which facilitated the generation of T follicular helper type 2 cells expressing IL-4. These germinal center T cells enhanced IgG1 and IgE but not IgG2a and IgG2b responses to the antigen initially recognized by basophil-bound IgD. In addition, IgD ligation by antigen attenuated allergic basophil degranulation induced by IgE co-ligation. Thus, IgD may link B cells with basophils to optimize humoral T helper type 2-mediated immunity against common environmental soluble antigens.


Subject(s)
Basophils/immunology , Galectins/immunology , Hyaluronan Receptors/immunology , Immunoglobulin D/immunology , Th2 Cells/immunology , Animals , Basophils/metabolism , Cell Line, Tumor , Cells, Cultured , Galectins/genetics , Galectins/metabolism , Gene Expression Profiling/methods , Humans , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , Immunoglobulin D/metabolism , Immunoglobulin E/immunology , Immunoglobulin E/metabolism , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Interleukin-4/genetics , Interleukin-4/immunology , Interleukin-4/metabolism , Mice, Inbred BALB C , Protein Binding , Th2 Cells/metabolism
3.
PLoS One ; 8(3): e58565, 2013.
Article in English | MEDLINE | ID: mdl-23555586

ABSTRACT

While Chlamydia trachomatis infections are frequently asymptomatic, mechanisms that regulate host response to this intracellular Gram-negative bacterium remain undefined. This investigation thus used peripheral blood mononuclear cells and endometrial tissue from women with or without Chlamydia genital tract infection to better define this response. Initial genome-wide microarray analysis revealed highly elevated expression of matrix metalloproteinase 10 and other molecules characteristic of Type 2 immunity (e.g., fibrosis and wound repair) in Chlamydia-infected tissue. This result was corroborated in flow cytometry and immunohistochemistry studies that showed extant upper genital tract Chlamydia infection was associated with increased co-expression of CD200 receptor and CD206 (markers of alternative macrophage activation) by endometrial macrophages as well as increased expression of GATA-3 (the transcription factor regulating TH2 differentiation) by endometrial CD4(+) T cells. Also among women with genital tract Chlamydia infection, peripheral CD3(+) CD4(+) and CD3(+) CD4(-) cells that proliferated in response to ex vivo stimulation with inactivated chlamydial antigen secreted significantly more interleukin (IL)-4 than tumor necrosis factor, interferon-γ, or IL-17; findings that repeated in T cells isolated from these same women 1 and 4 months after infection had been eradicated. Our results thus newly reveal that genital infection by an obligate intracellular bacterium induces polarization towards Type 2 immunity, including Chlamydia-specific TH2 development. Based on these findings, we now speculate that Type 2 immunity was selected by evolution as the host response to C. trachomatis in the human female genital tract to control infection and minimize immunopathological damage to vital reproductive structures.


Subject(s)
Chlamydia Infections/immunology , Chlamydia trachomatis/immunology , Cytokines/immunology , Gene Expression Regulation/immunology , Th2 Cells/immunology , Adolescent , Adult , Antigens, CD/biosynthesis , Antigens, CD/immunology , Chlamydia Infections/blood , Chlamydia Infections/pathology , Cytokines/blood , Female , Humans , Macrophage Activation/immunology , Th2 Cells/metabolism , Th2 Cells/pathology
4.
Clin Obstet Gynecol ; 55(4): 938-44, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23090462

ABSTRACT

Neonatal herpes, seen roughly in 1 of 3000 live births in the United States, is the most serious manifestation of herpes simplex virus (HSV) infection in the perinatal period. Although acyclovir therapy decreases infant mortality associated with perinatal HSV transmission, development of permanent neurological disabilities is not uncommon. Mother-to-neonate HSV transmission is most efficient when maternal genital tract HSV infection is acquired proximate to the time of delivery, signifying that neonatal herpes prevention strategies need to focus on decreasing the incidence of maternal infection during pregnancy and more precisely identifying infants most likely to benefit from prophylactic antiviral therapy.


Subject(s)
Herpes Simplex/prevention & control , Herpes Simplex/transmission , Herpesvirus 1, Human , Herpesvirus 2, Human , Infectious Disease Transmission, Vertical/prevention & control , Pregnancy Complications, Infectious/prevention & control , Antibodies, Viral/blood , Central Nervous System Diseases/virology , Female , Herpes Genitalis/prevention & control , Herpes Genitalis/transmission , Herpes Genitalis/virology , Herpes Simplex/complications , Herpes Simplex/epidemiology , Herpesvirus 1, Human/immunology , Herpesvirus 2, Human/immunology , Humans , Infant, Newborn , Pregnancy , Pregnancy Complications, Infectious/virology , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...