Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 18: 1277626, 2024.
Article in English | MEDLINE | ID: mdl-38591068

ABSTRACT

Introduction: A water extract of Centella asiatica (L.) Urban [Apiaceae] (CAW) has demonstrated cognitive-enhancing effects in mouse models of Alzheimer's disease and aging, the magnitude of which is influenced by whether CAW is delivered in the drinking water or the diet. These cognitive benefits are accompanied by improvements in oxidative stress and mitochondrial function in the brain, two pathways related to the neuroinflammatory response. The effect of CAW on neuroinflammation, however, has not been directly studied. Here, we investigated the effect of CAW on neuroinflammation in 5xFAD mice and compared plasma levels of CAW's active compounds following two modes of CAW administration. Methods: Eight-to-nine-month-old male and female 5xFAD mice and their wild-type littermates were administered CAW in their diet or drinking water (0 or 1,000 mg/kg/day) for five weeks. Immunohistochemistry was performed for ß-amyloid (Aß), glial fibrillary acidic protein (GFAP), and Griffonia simplicifolia lectin I (GSL I) in the cortex and hippocampus. Gene expression of inflammatory mediators (IL-6, TNFα, IL-1ß, TREM2, AIF1, CX3CR1, CX3CL1, CD36, C3AR1, RAGE, CCR6, CD3E) was measured in the deep grey matter. Results: CAW decreased cortical Aß plaque burden in female 5xFAD mice administered CAW in the drinking water but had no effect on Aß plaques in other treatment groups. CAW did not impact elevated levels of GFAP or GSL I in 5xFAD mice, regardless of sex, brain region, or mode of CAW administration. In the deep grey matter, CAW increased C3AR1 expression in 5xFAD females administered CAW in the drinking water and decreased IL-1ß expression in 5xFAD males administered CAW in the diet. CAW had no effect, however, on gene expression levels of any other inflammatory mediator in the deep grey, for either sex or mode of CAW administration. Mice administered CAW in the drinking water versus the diet had significantly higher plasma levels of CAW compounds. Discussion: CAW had little impact on the neuroinflammatory markers selected for evaluation in the present study, suggesting that the cognitive benefits of CAW may not be mediated by an anti-inflammatory effect or that additional molecular markers are needed to fully characterize the effect of CAW on neuroinflammation.

2.
J Alzheimers Dis ; 85(4): 1601-1619, 2022.
Article in English | MEDLINE | ID: mdl-34958022

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disease characterized by the accumulation of amyloid-ß (Aß) peptide in the brain. OBJECTIVE: To gain a better insight into alterations in major biochemical pathways underlying AD. METHODS: We compared metabolomic profiles of hippocampal tissue of 20-month-old female Tg2576 mice expressing the familial AD-associated hAPP695SW transgene with their 20-month-old wild type female littermates. RESULTS: The hAPP695SW transgene causes overproduction and accumulation of Aß in the brain. Out of 180 annotated metabolites, 54 metabolites differed (30 higher and 24 lower in Tg2576 versus wild-type hippocampal tissue) and were linked to the amino acid, nucleic acid, glycerophospholipid, ceramide, and fatty acid metabolism. Our results point to 1) heightened metabolic activity as indicated by higher levels of urea, enhanced fatty acid ß-oxidation, and lower fatty acid levels; 2) enhanced redox regulation; and 3) an imbalance of neuro-excitatory and neuro-inhibitory metabolites in hippocampal tissue of aged hAPP695SW transgenic mice. CONCLUSION: Taken together, our results suggest that dysregulation of multiple metabolic pathways associated with a concomitant shift to an excitatory-inhibitory imbalance are contributing mechanisms of AD-related pathology in the Tg2576 mouse.


Subject(s)
Amyloid beta-Peptides/metabolism , Metabolomics , Signal Transduction , Transgenes/genetics , Aged , Alzheimer Disease/pathology , Animals , Brain/pathology , Disease Models, Animal , Female , Hippocampus/pathology , Humans , Mice , Mice, Transgenic
3.
Front Pharmacol ; 12: 788312, 2021.
Article in English | MEDLINE | ID: mdl-34975484

ABSTRACT

Centella asiatica is an herb used in Ayurvedic and traditional Chinese medicine for its beneficial effects on brain health and cognition. Our group has previously shown that a water extract of Centella asiatica (CAW) elicits cognitive-enhancing effects in animal models of aging and Alzheimer's disease, including a dose-related effect of CAW on memory in the 5xFAD mouse model of ß-amyloid accumulation. Here, we endeavor to elucidate the mechanisms underlying the effects of CAW in the brain by conducting a metabolomic analysis of cortical tissue from 5xFAD mice treated with increasing concentrations of CAW. Tissue was collected from 8-month-old male and female 5xFAD mice and their wild-type littermates treated with CAW (0, 200, 500, or 1,000 mg/kg/d) dissolved in their drinking water for 5 weeks. High-performance liquid chromatography coupled to high-resolution mass spectrometry analysis was performed and relative levels of 120 annotated metabolites were assessed in the treatment groups. Metabolomic analysis revealed sex differences in the effect of the 5xFAD genotype on metabolite levels compared to wild-type mice, and variations in the metabolomic response to CAW depending on sex, genotype, and CAW dose. In at least three of the four treated groups (5xFAD or wild-type, male or female), CAW (500 mg/kg/d) significantly altered metabolic pathways related to purine metabolism, nicotinate and nicotinamide metabolism, and glycerophospholipid metabolism. The results are in line with some of our previous findings regarding specific mechanisms of action of CAW (e.g., improving mitochondrial function, reducing oxidative stress, and increasing synaptic density). Furthermore, these findings provide new information about additional, potential mechanisms for the cognitive-enhancing effect of CAW, including upregulation of nicotinamide adenine dinucleotide in the brain and modulation of brain-derived neurotrophic factor. These metabolic pathways have been implicated in the pathophysiology of Alzheimer's disease, highlighting the therapeutic potential of CAW in this neurodegenerative disease.

4.
Nutrients ; 12(11)2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33202902

ABSTRACT

Centella asiatica (CA) is an edible plant and a popular botanical dietary supplement. It is reputed, in Ayurveda, to mitigate age-related cognitive decline. There is a considerable body of preclinical literature supporting CA's ability to improve learning and memory. This study evaluated the contribution of CA's triterpenes (TT), widely considered its active compounds, and caffeoylquinic acids (CQA) to the cognitive effects of CA water extract (CAW) in 5XFAD mice, a model of Alzheimer's disease. 5XFAD mice were fed a control diet alone, or one containing 1% CAW or compound groups (TT, CQA, or TT + CQA) equivalent to their content in 1% CAW. Wild-type (WT) littermates received the control diet. Conditioned fear response (CFR) was evaluated after 4.5 weeks. Female 5XFAD controls showed no deficit in CFR compared to WT females, nor any effects from treatment. In males, CFR of 5XFAD controls was attenuated compared to WT littermates (p = 0.005). 5XFAD males receiving CQA or TT + CQA had significantly improved CFR (p < 0.05) compared to 5XFAD male controls. CFR did not differ between 5XFAD males receiving treatment diets and WT males. These data confirm a role for CQA in CAW's cognitive effects.


Subject(s)
Alzheimer Disease/drug therapy , Centella/chemistry , Cognitive Dysfunction/drug therapy , Quinic Acid/pharmacology , Triterpenes/pharmacology , Animals , Cognition/drug effects , Cognition Disorders , Diet , Disease Models, Animal , Female , Learning/drug effects , Male , Memory/drug effects , Mice , Mice, Inbred C57BL , Mice, Transgenic , Plant Extracts , Quinic Acid/analogs & derivatives , Quinic Acid/therapeutic use , Triterpenes/therapeutic use
5.
Antioxidants (Basel) ; 8(12)2019 Dec 08.
Article in English | MEDLINE | ID: mdl-31817977

ABSTRACT

Centella asiatica (CA) herb is a traditional medicine, long reputed to provide cognitive benefits. We have reported that CA water extract (CAW) treatment improves cognitive function of aged Alzheimer's disease (AD) model Tg2576 and wild-type (WT) mice, and induces an NRF2-regulated antioxidant response in aged WT mice. Here, CAW was administered to AD model 5XFAD female and male mice and WT littermates (age: 7.6 +/ - 0.6 months), and object recall and contextual fear memory were tested after three weeks treatment. CAW's impact on amyloid-ß plaque burden, and markers of neuronal oxidative stress and synaptic density, was assessed after five weeks treatment. CAW antioxidant activity was evaluated via nuclear transcription factor (erythroid-derived 2)-like 2 (NRF2) and NRF2-regulated antioxidant response element gene expression. Memory improvement in both genders and genotypes was associated with dose-dependent CAW treatment without affecting plaque burden, and marginally increased synaptic density markers in the hippocampus and prefrontal cortex. CAW treatment increased Nrf2 in hippocampus and other NRF2 targets (heme oxygenase-1, NAD(P)H quinone dehydrogenase 1, glutamate-cysteine ligase catalytic subunit). Reduced plaque-associated SOD1, an indicator of oxidative stress, was observed in the hippocampi and cortices of CAW-treated 5XFAD mice. We postulate that CAW treatment leads to reduced oxidative stress, contributing to improved neuronal health and cognition.

6.
Oxid Med Cell Longev ; 2017: 7023091, 2017.
Article in English | MEDLINE | ID: mdl-28883904

ABSTRACT

Centella asiatica has been used for centuries to enhance memory. We have previously shown that a water extract of Centella asiatica (CAW) protects against the deleterious effects of amyloid-ß (Aß) in neuroblastoma cells and attenuates Aß-induced cognitive deficits in mice. Yet, the neuroprotective mechanism of CAW has yet to be thoroughly explored in neurons from these animals. This study investigates the effects of CAW on neuronal metabolism and oxidative stress in isolated Aß-expressing neurons. Hippocampal neurons from amyloid precursor protein overexpressing Tg2576 mice and wild-type (WT) littermates were treated with CAW. In both genotypes, CAW increased the expression of antioxidant response genes which attenuated the Aß-induced elevations in reactive oxygen species (ROS) and lipid peroxidation in Tg2576 neurons. CAW also improved mitochondrial function in both genotypes and increased the expression of electron transport chain enzymes and mitochondrial labeling, suggesting an increase in mitochondrial content. These data show that CAW protects against mitochondrial dysfunction and oxidative stress in Aß-exposed hippocampal neurons which could contribute to the beneficial effects of the extract observed in vivo. Since CAW also improved mitochondrial function in the absence of Aß, these results suggest a broader utility for other conditions where neuronal mitochondrial dysfunction occurs.


Subject(s)
Amyloid beta-Peptides/pharmacology , Hippocampus/cytology , Mitochondria/drug effects , Mitochondria/metabolism , Neurons/drug effects , Neurons/metabolism , Triterpenes/pharmacology , Animals , Centella , Humans , Lipid Peroxidation/drug effects , Mice , Oxidative Stress/drug effects , Plant Extracts , Reactive Oxygen Species/metabolism
7.
Neurosci Lett ; 646: 24-29, 2017 04 12.
Article in English | MEDLINE | ID: mdl-28279707

ABSTRACT

The medicinal plant Centella asiatica has long been used to improve memory and cognitive function. We have previously shown that a water extract from the plant (CAW) is neuroprotective against the deleterious cognitive effects of amyloid-ß (Aß) exposure in a mouse model of Alzheimer's disease, and improves learning and memory in healthy aged mice as well. This study explores the physiological underpinnings of those effects by examining how CAW, as well as chemical compounds found within the extract, modulate synaptic health in Aß-exposed neurons. Hippocampal neurons from amyloid precursor protein over-expressing Tg2576 mice and their wild-type (WT) littermates were used to investigate the effect of CAW and various compounds found within the extract on Aß-induced dendritic simplification and synaptic loss. CAW enhanced arborization and spine densities in WT neurons and prevented the diminished outgrowth of dendrites and loss of spines caused by Aß exposure in Tg2576 neurons. Triterpene compounds present in CAW were found to similarly improve arborization although they did not affect spine density. In contrast caffeoylquinic acid (CQA) compounds from CAW were able to modulate both of these endpoints, although there was specificity as to which CQAs mediated which effect. These data suggest that CAW, and several of the compounds found therein, can improve dendritic arborization and synaptic differentiation in the context of Aß exposure which may underlie the cognitive improvement observed in response to the extract in vivo. Additionally, since CAW, and its constituent compounds, also improved these endpoints in WT neurons, these results may point to a broader therapeutic utility of the extract beyond Alzheimer's disease.


Subject(s)
Amyloid beta-Peptides/pharmacology , Centella , Dendritic Spines/drug effects , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Centella/metabolism , Dendritic Spines/metabolism , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/metabolism , Memory/drug effects , Memory/physiology , Mice, Transgenic
8.
J Steroid Biochem Mol Biol ; 164: 299-308, 2016 11.
Article in English | MEDLINE | ID: mdl-26429395

ABSTRACT

Vitamin D status has been associated with obesity, metabolic syndrome and several cancers including colon and breast. Since adipocytes express VDR and obesity is a known risk factor for cancer, vitamin D actions in adipose tissue may contribute to its cancer protective effects. In the mammary gland, signaling from adipocytes to epithelial cells is necessary for breast cancer initiation, but the impact of vitamin D on this cross-talk is unclear. To examine the role of VDR in adipose tissue, particularly in the context of the mammary gland, we crossed Vdr-flox mice with Fabp4-cre mice to generate mice with adipose-specific Vdr deletion (termed CVF mice). CVF mice and Fabp4-cre control mice (termed CN1 mice) were reared on high calcium "rescue" diets (for comparison to global VDRKO mice) or on high fat diets (to stimulate adiposity). Vdr expression was significantly reduced in adipose tissue of CVF mice compared to CN1 mice. In contrast to global VDRKO mice (which exhibit adipose atrophy), female CVF mice exhibited higher growth rates and increased visceral fat pad weight compared to control mice. Expression of Ucp1 and Pparg were elevated in white adipose tissue of CVF mice supporting these genes as Vdr targets in mature adipocytes. Adipose-specific Vdr deletion did not impair glucose tolerance or alter the weight of brown adipose tissue, liver, pancreas or bone in response to high fat feeding. In contrast to the effect of adipose-specific Vdr deletion on visceral fat pads, the weight of the subcutaneous (mammary) fat pad was not increased in high fat fed CVF female mice compared to control mice. Quantitative analysis of mammary ductal development on whole mounts and H&E stained sections indicated that adipose-deletion of Vdr significantly enhanced mammary epithelial density and branching. Collectively, these data support the hypothesis that Vdr in mature adipocytes alters the metabolic response to high fat diets and exerts anti-proliferative effects on the mammary epithelium.


Subject(s)
Adipocytes, White/metabolism , Epithelial Cells/metabolism , Intra-Abdominal Fat/metabolism , Mammary Glands, Animal/metabolism , Obesity/metabolism , Receptors, Calcitriol/genetics , Adipocytes, White/pathology , Adipose Tissue/metabolism , Adipose Tissue/pathology , Animals , Diet, High-Fat , Epithelial Cells/cytology , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Female , Gene Expression Regulation , Glucose Tolerance Test , Integrases/genetics , Integrases/metabolism , Intra-Abdominal Fat/pathology , Mammary Glands, Animal/cytology , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/etiology , Obesity/genetics , Obesity/pathology , PPAR gamma/genetics , PPAR gamma/metabolism , Receptors, Calcitriol/deficiency , Signal Transduction , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism , Vitamin D/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...