Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Rev Sci Instrum ; 87(11): 11D430, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910322

ABSTRACT

The in situ absolute calibration of the JET real-time protection imaging system has been performed for the first time by means of radiometric light source placed inside the JET vessel and operated by remote handling. High accuracy of the calibration is confirmed by cross-validation of the near infrared (NIR) cameras against each other, with thermal IR cameras, and with the beryllium evaporator, which lead to successful protection of the JET first wall during the last campaign. The operation temperature ranges of NIR protection cameras for the materials used on JET are Be 650-1600 °C, W coating 600-1320 °C, and W 650-1500 °C.

3.
Rev Sci Instrum ; 87(11): 11D419, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910440

ABSTRACT

Recent improvements in software tools and methodology have allowed us to perform a more comprehensive in-vessel calibration for all mid-infrared camera systems at JET. A comparison of experimental methods to calculate the non-uniformity correction is described as well as the linearity for the different camera systems. Measurements of the temperature are assessed for the different diagnostics.

4.
Rev Sci Instrum ; 83(10): 10D511, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23130790

ABSTRACT

A new endoscope with optimised divertor view has been developed in order to survey and monitor the emission of specific impurities such as tungsten and the remaining carbon as well as beryllium in the tungsten divertor of JET after the implementation of the ITER-like wall in 2011. The endoscope is a prototype for testing an ITER relevant design concept based on reflective optics only. It may be subject to high neutron fluxes as expected in ITER. The operating wavelength range, from 390 nm to 2500 nm, allows the measurements of the emission of all expected impurities (W I, Be II, C I, C II, C III) with high optical transmittance (≥ 30% in the designed wavelength range) as well as high spatial resolution that is ≤ 2 mm at the object plane and ≤ 3 mm for the full depth of field (± 0.7 m). The new optical design includes options for in situ calibration of the endoscope transmittance during the experimental campaign, which allows the continuous tracing of possible transmittance degradation with time due to impurity deposition and erosion by fast neutral particles. In parallel to the new optical design, a new type of possibly ITER relevant shutter system based on pneumatic techniques has been developed and integrated into the endoscope head. The endoscope is equipped with four digital CCD cameras, each combined with two filter wheels for narrow band interference and neutral density filters. Additionally, two protection cameras in the λ > 0.95 µm range have been integrated in the optical design for the real time wall protection during the plasma operation of JET.

5.
Rev Sci Instrum ; 83(10): 10D728, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23130797

ABSTRACT

With installation of the ITER-like wall in JET a major diagnostic upgrade to measure the neutral gas pressure and composition in the sub-divertor region has been completed, to characterise retention and outgassing of the new metallic first wall. The upgrade includes two new magnetically shielded systems consisting of sensitive capacitance manometers and residual gas analysers, both capable of providing data during plasma operation. These enable absolute pressure and gas composition measurements (pressure range: 10(-5)-10(-1) mbar, mass range: 1-200 amu, respectively) and have been used to characterise the neutral gas behaviour under various plasma conditions.

6.
Phys Rev Lett ; 91(6): 065001, 2003 Aug 08.
Article in English | MEDLINE | ID: mdl-12935084

ABSTRACT

The dynamical coupling between turbulent transport and parallel flows has been investigated in the plasma boundary region of the Joint European Torus tokamak. Experimental results show that there is a dynamical relationship between transport and parallel flows. As the size of transport events increases, parallel flows also increase. These results show that turbulent transport can drive parallel flows in the plasma boundary of fusion plasmas. This new type of measurement is an important element to unravel the overall picture connecting radial transport and flows in fusion plasmas.

SELECTION OF CITATIONS
SEARCH DETAIL
...