Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microsc Microanal ; : 1-18, 2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33731229

ABSTRACT

Electron-probe microanalysis of uranium and uranium alloys poses several problems, such as rapid oxidation, large poorly constrained correction factors, and a large number of characteristic x-ray lines. We show that U-metal can grow 10 nm of oxide within ~20 s of air exposure, increasing to 15­20 nm within a few minutes, which can produce a 30% quantification error at 5 kV. A 15 nm carbon coating on the UO2 reference material also produces an ~30% quantification error of the uncoated but surface oxidized U sample at 5 kV. Correcting for both the coating and oxide improved the analysis accuracy to better than ±1% down to 7 kV and ~2% at 5 kV, but the error increases strongly below this. The measurement of C in U identified a previously unreported U N6­O4 line interference on the C Kα peak, which can produce over 1% error in the analysis total. Oxide stoichiometry was demonstrated to have only a small impact on quantification. The measurement of the O Kα and U Mα mass absorption coefficients in U as 9,528 and 798 cm2/g, respectively, shows good agreement with recently published values and also produces small differences in a quantification error.

2.
Microsc Microanal ; 25(5): 1112-1129, 2019 10.
Article in English | MEDLINE | ID: mdl-31307568

ABSTRACT

Low voltage electron probe microanalysis (EPMA) of metals can be complicated by the presence of a surface oxide. If a conductive coating is applied, analysis becomes one of a three-layer structure. A method is presented which allows for the coating and oxide thicknesses and the substrate intensities to be determined. By restricting the range of coating and oxide thicknesses, tc and to respectively, x-ray intensities can be parameterized using a combination of linear functions of tc and to. tc can be determined from the coating element k-ratio independently of the oxide thickness. to can then be derived from the O k-ratio and tc. From tc and to the intensity components of the k-ratios from the oxide layer and substrate can each be derived. Modeled results are presented for an Ag on Bi2O3 on Bi system, with tc and to each ranging from 5 to 20 nm, for voltages of 5-20 kV. The method is tested against experimental measurements of Ag- or C-coated samples of polished Bi samples which have been allowed to naturally oxidize. Oxide thicknesses determined both before and after coating with Ag or C are consistent. Predicted Bi Mα k-ratios also show good agreement with EPMA-measured values.

3.
Microsc Microanal ; 24(6): 612-622, 2018 12.
Article in English | MEDLINE | ID: mdl-30442209

ABSTRACT

Electron beam-induced carbon contamination is a balance between simultaneous deposition and erosion processes. Net erosion rates for a 25 nA 3 kV beam can reduce a 5 nm C coating by 20% in 60 s. Measurements were made on C-coated Bi substrates, with coating thicknesses of 5-20 nm, over a range of analysis conditions. Erosion showed a step-like increase with increasing electron flux density. Both the erosion rate and its rate of change increase with decreasing accelerating voltage. As the flux density decreases the rate of change increases more rapidly with decreasing voltage. Time-dependent intensity (TDI) measurements can be used to correct for errors, in both coating and substrate quantifications, resulting from carbon erosion. Uncorrected analyses showed increasing errors in coating thickness with decreasing accelerating voltage. Although the erosion rate was found to be independent of coating thickness this produces an increasing absolute error with decreasing starting thickness, ranging from 1.5% for a 20 nm C coating on Bi at 15 kV to 14% for a 5 nm coating at 3 kV. Errors in Bi Mα measurement are <1% at 5 kV or above but increase rapidly below this, both with decreasing voltage and increasing coating thickness to 20% for a 20 nm coated sample at 3 kV.

4.
Microsc Microanal ; 24(2): 83-92, 2018 04.
Article in English | MEDLINE | ID: mdl-29699598

ABSTRACT

The accuracy to which Cu and Al coatings can be determined, and the effect this has on the quantification of the substrate, is investigated. Cu and Al coatings of nominally 5, 10, 15, and 20 nm were sputter coated onto polished Bi using two configurations of coater: One with the film thickness monitor (FTM) sensor colocated with the samples, and one where the sensor is located to one side. The FTM thicknesses are compared against those calculated from measured Cu Lα and Al Kα k-ratios using PENEPMA, GMRFilm, and DTSA-II. Selected samples were also cross-sectioned using focused ion beam. Both systems produced repeatable coatings, the thickest coating being approximately four times the thinnest coating. The side-located FTM sensor indicated thicknesses less than half those of the software modeled results, propagating on to 70% errors in substrate quantification at 5 kV. The colocated FTM sensor produced errors in film thickness and substrate quantification of 10-20%. Over the range of film thicknesses and accelerating voltages modeled both the substrate and coating k-ratios can be approximated by linear trends as functions of film thickness. The Al films were found to have a reduced density of ~2 g/cm2.

SELECTION OF CITATIONS
SEARCH DETAIL
...