Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(10): e2315860121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38408244

ABSTRACT

Human cytomegalovirus (HCMV) is a prevalent pathogen that establishes life-long latent infection in hematopoietic cells. While this infection is usually asymptomatic, immune dysregulation leads to viral reactivation, which can cause significant morbidity and mortality. However, the mechanisms underpinning reactivation remain incompletely understood. The HCMV major immediate early promoter (MIEP)/enhancer is a key factor in this process, as its transactivation from a repressed to active state helps drive viral gene transcription necessary for reactivation from latency. Numerous host transcription factors bind the MIE locus and recruit repressive chromatin modifiers, thus impeding virus reactivation. One such factor is CCCTC-binding protein (CTCF), a highly conserved host zinc finger protein that mediates chromatin conformation and nuclear architecture. However, the mechanisms by which CTCF contributes to HCMV latency were previously unexplored. Here, we confirm that CTCF binds two convergent sites within the MIE locus during latency in primary CD14+ monocytes, and following cellular differentiation, CTCF association is lost as the virus reactivates. While mutation of the MIE enhancer CTCF binding site does not impact viral lytic growth in fibroblasts, this mutant virus fails to maintain latency in myeloid cells. Furthermore, we show the two convergent CTCF binding sites allow looping to occur across the MIEP, supporting transcriptional repression during latency. Indeed, looping between the two sites diminishes during virus reactivation, concurrent with activation of MIE transcription. Taken together, our data reveal that three-dimensional chromatin looping aids in the regulation of HCMV latency and provides insight into promoter/enhancer regulation that may prove broadly applicable across biological systems.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Humans , Chromatin/genetics , Cytomegalovirus/genetics , Cytomegalovirus Infections/genetics , Gene Expression Regulation, Viral , Promoter Regions, Genetic , Virus Activation/genetics , Virus Latency/genetics
2.
bioRxiv ; 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37732204

ABSTRACT

Establishing a non-productive quiescent/silent infection within monocytes is essential for spread of human cytomegalovirus (HCMV). Yet, how HCMV establishes a quiescent infection in monocytes remains unclear. US28 is a viral G protein-coupled receptor (GPCR) essential for silent infections within cells of the myeloid lineage. We found virion-associated US28 was rapidly delivered to monocytes, while de novo synthesized US28 was delayed for several days. A recombinant mutant virus lacking US28 (US28Δ) was unable to establish a quiescent infection, resulting in a fully productive lytic replication cycle. Mechanistically, viral entry of US28Δ phosphorylated Akt at both serine 473 (S473) and threonine 308 (T308), which contrasted with the site-specific phosphorylation of Akt at S473 following WT infection. Preventing Akt bi-phosphorylation prevented lytic replication of US28Δ, and ectopic expression of a constitutively phosphorylated Akt variant triggered lytic replication of WT infection. Our data demonstrate that virion-delivered US28 fine-tunes Akt activity to permit HCMV infection to enter a quiescent state following primary infection of monocytes.

3.
mBio ; 14(4): e0032623, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37439556

ABSTRACT

Human cytomegalovirus (HCMV) is a betaherpesvirus that establishes lifelong infection in its host and can cause severe comorbidities in individuals with suppressed or compromised immune systems. The lifecycle of HCMV consists of lytic and latent phases, largely dependent upon the cell type infected and whether transcription from the major immediate early locus can ensue. Control of this locus, which acts as a critical "switch" region from where the lytic gene expression cascade originates, as well as regulation of the additional ~235 kilobases of virus genome, occurs through chromatinization with cellular histone proteins after infection. Upon infection of a host cell, an initial intrinsic antiviral response represses gene expression from the incoming genome, which is relieved in permissive cells by viral and host factors in concert. Latency is established in a subset of hematopoietic cells, during which viral transcription is largely repressed while the genome is maintained. As these latently infected cells differentiate, the cellular milieu and epigenetic modifications change, giving rise to the initial stages of virus reactivation from latency. Thus, throughout the cycle of infection, chromatinization, chromatin modifiers, and the recruitment of specific transcription factors influence the expression of genes from the HCMV genome. In this review, we discuss epigenetic regulation of the HCMV genome during the different phases of infection, with an emphasis on recent reports that add to our current perspective.


Subject(s)
Chromatin , Cytomegalovirus Infections , Humans , Epigenesis, Genetic , Virus Latency/genetics , Histones/metabolism , Cytomegalovirus/physiology , Gene Expression Regulation, Viral
4.
Sci Adv ; 8(43): eadd1168, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36288299

ABSTRACT

Cytomegalovirus (CMV) reactivation from latency following immune dysregulation remains a serious risk for patients, often causing substantial morbidity and mortality. Here, we demonstrate the CMV-encoded G protein-coupled receptor, US28, in coordination with cellular Ephrin receptor A2, attenuates mitogen-activated protein kinase signaling, thereby limiting viral replication in latently infected primary monocytes. Furthermore, treatment of latently infected primary monocytes with dasatinib, a Food and Drug Association-approved kinase inhibitor used to treat a subset of leukemias, results in CMV reactivation. These ex vivo data correlate with our retrospective analyses of the Explorys electronic health record database, where we find dasatinib treatment is associated with a significant risk of CMV-associated disease (odds ratio 1.58, P = 0.0004). Collectively, our findings elucidate a signaling pathway that plays a central role in the balance between CMV latency and reactivation and identifies a common therapeutic cancer treatment that elevates the risk of CMV-associated disease.

5.
Sci Rep ; 9(1): 14413, 2019 10 08.
Article in English | MEDLINE | ID: mdl-31595002

ABSTRACT

Tristetraprolin (TTP), encoded by the Zfp36 gene, is a zinc-finger protein that regulates RNA stability primarily through association with 3' untranslated regions (3' UTRs) of target mRNAs. While TTP is expressed abundantly in the intestines, its function in intestinal epithelial cells (IECs) is unknown. Here we used a cre-lox system to remove Zfp36 in the mouse epithelium to uncover a role for TTP in IECs and to identify target genes in these cells. While TTP was largely dispensable for establishment and maintenance of the colonic epithelium, we found an expansion of the proliferative zone and an increase in goblet cell numbers in the colon crypts of Zfp36ΔIEC mice. Furthermore, through RNA-sequencing of transcripts isolated from the colons of Zfp36fl/fl and Zfp36ΔIEC mice, we found that expression of inducible nitric oxide synthase (iNos or Nos2) was elevated in TTP-knockout IECs. We demonstrate that TTP interacts with AU-rich elements in the Nos2 3' UTR and suppresses Nos2 expression. In comparison to control Zfp36fl/fl mice, Zfp36ΔIEC mice were less susceptible to dextran sodium sulfate (DSS)-induced acute colitis. Together, these results demonstrate that TTP in IECs targets Nos2 expression and aggravates acute colitis.


Subject(s)
Colitis/genetics , Colon/metabolism , Nitric Oxide Synthase Type II/genetics , Tristetraprolin/genetics , 3' Untranslated Regions/genetics , Animals , Colitis/chemically induced , Colitis/pathology , Colon/pathology , Dextran Sulfate/toxicity , Disease Models, Animal , Gene Expression Regulation, Enzymologic/genetics , Gene Knockout Techniques , Heterogeneous Nuclear Ribonucleoprotein D0 , High-Throughput Nucleotide Sequencing , Humans , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Intestines/enzymology , Intestines/pathology , Mice , RNA Stability/genetics , RNA-Binding Proteins/genetics
6.
PLoS One ; 14(2): e0212850, 2019.
Article in English | MEDLINE | ID: mdl-30794691

ABSTRACT

Crohn's disease (CD) is a debilitating inflammatory bowel disease (IBD) that arises from chronic inflammation in the gastrointestinal tract. Genome-wide association studies (GWAS) have identified over 200 single nucleotide polymorphisms (SNPs) that are associated with a predisposition for developing IBD. For the majority, the causal variant and target genes affected are unknown. Here, we investigated the CD-associated SNP rs6651252 that maps to a gene desert region on chromosome 8. We demonstrate that rs6651252 resides within a Wnt responsive DNA enhancer element (WRE) and that the disease associated allele augments binding of the TCF7L2 transcription factor to this region. Using CRISPR/Cas9 directed gene editing and epigenetic modulation, we find that the rs6651252 enhancer regulates expression of the c-MYC proto-oncogene (MYC). Furthermore, we found MYC transcript levels are elevated in patient-derived colonic segments harboring the disease-associated allele in comparison to those containing the ancestral allele. These results suggest that Wnt/MYC signaling contributes to CD pathogenesis and that patients harboring the disease-associated allele may benefit from therapies that target MYC or MYC-regulated genes.


Subject(s)
Colon/metabolism , Crohn Disease , Enhancer Elements, Genetic , Epithelial Cells/metabolism , Gene Expression Regulation , Polymorphism, Single Nucleotide , Proto-Oncogene Proteins c-myc , Alleles , Chromosomes, Human, Pair 8/genetics , Chromosomes, Human, Pair 8/metabolism , Colon/pathology , Crohn Disease/genetics , Crohn Disease/metabolism , Crohn Disease/pathology , Epithelial Cells/pathology , HCT116 Cells , HEK293 Cells , Humans , Proto-Oncogene Mas , Proto-Oncogene Proteins c-myc/biosynthesis , Proto-Oncogene Proteins c-myc/genetics , Wnt Signaling Pathway/genetics
7.
BMC Cancer ; 15: 404, 2015 May 14.
Article in English | MEDLINE | ID: mdl-25971923

ABSTRACT

BACKGROUND: Cancer-specific survival has changed remarkably little over the past half century, mainly because metastases that are occult at diagnosis and generally resistant to chemotherapy subsequently develop months, years or even decades following definitive therapy. Targeting the dormant micrometastases responsible for these delayed or occult metastases would represent a major new tool in cancer patient management. Our hypothesis is that these metastases develop from micrometastatic cells that are suppressed by normal extracellular matrix (ECM). METHODS: A new screening method was developed that compared the effect of drugs on the proliferation of cells grown on a normal ECM gel (small intestine submucosa, SISgel) to cells grown on plastic cell culture plates. The desired endpoint was that cells on SISgel were more sensitive than the same cells grown as monolayers. Known cancer chemotherapeutic agents show the opposite pattern. RESULTS: Screening 13,000 compounds identified two leads with low toxicity in mice and EC50 values in the range of 3-30 µM, depending on the cell line, and another two leads that were too toxic to mice to be useful. In a novel flank xenograft method of suppressed/dormant cells co-injected with SISgel into the flank, the lead compounds significantly eliminated the suppressed cells, whereas conventional chemotherapeutics were ineffective. Using a 4T1 triple negative breast cancer model, modified for physiological metastatic progression, as predicted, both lead compounds reduced the number of large micrometastases/macrometastases in the lung. One of the compounds also targeted cancer stem cells (CSC) isolated from the parental line. The CSC also retained their stemness on SISgel. Mechanistic studies showed a mild, late apoptotic response and depending on the compound, a mild arrest either at S or G2/M in the cell cycle. CONCLUSIONS: In summary we describe a novel, first in class set of compounds that target micrometastatic cells and prevent their reactivation to form recurrent tumors/macrometastases.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Neoplasm Micrometastasis/drug therapy , Animals , Antineoplastic Agents/therapeutic use , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Inhibitory Concentration 50 , Maximum Tolerated Dose , Mice, Inbred BALB C , Mice, Nude , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...