Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Circ Res ; 86(3): 326-33, 2000 Feb 18.
Article in English | MEDLINE | ID: mdl-10679485

ABSTRACT

The stimulation of beta-adrenoceptors in cardiac cells results in a rapid loss of cellular Mg(2+). Because insulin physiologically counteracts several of the cellular effects mediated by the activation of beta-adrenoceptors and the elevation of cytosolic cAMP levels, we investigated whether insulin administration could prevent Mg(2+) mobilization from rat hearts and ventricular myocytes. Rat hearts were perfused in a retrograde Langendorff system, and the changes in extracellular Mg(2+) were measured by atomic absorbance spectrophotometry. Pretreatment of the hearts with 6 nmol/L insulin completely prevented the Mg(2+) extrusion induced by the beta-adrenergic agonist isoproterenol. Furthermore, the administration of insulin per se induced an accumulation of Mg(2+) by the heart. This accumulation was small but detectable in the presence of 25 to 35 micromol/L [Mg(2+)](o) and increased in proportion to [Mg(2+)](o). Insulin-mediated Mg(2+) accumulation was not observed in hearts perfused with a medium devoid of glucose or with a medium containing the inhibitors of glucose transport, cytochalasin B and phloretin. Insulin-stimulated [(3)H]2-deoxyglucose accumulation was measured in collagenase-dispersed cardiac ventricular myocytes in the presence of varying levels of [Mg(2+)](o). Glucose transport was not observed below 25 micromol/L [Mg(2+)](o), and it also increased in proportion to [Mg(2+)](o). Taken together, these results indicate the presence of a major uptake of Mg(2+) into cardiac cells that is stimulated by insulin and may require the insulin-induced operation of a glucose transporter. Hence, extracellular and/or intracellular Mg(2+) may modulate glucose transport and/or utilization.


Subject(s)
Glucose/metabolism , Insulin/pharmacology , Magnesium/metabolism , Myocardium/metabolism , Adrenergic beta-Agonists/pharmacology , Animals , Cytochalasin B/pharmacology , Deoxyglucose/pharmacokinetics , Heart Ventricles , In Vitro Techniques , Isoproterenol/pharmacology , Male , Monosaccharide Transport Proteins/antagonists & inhibitors , Monosaccharide Transport Proteins/physiology , Myocardium/cytology , Phloretin/pharmacology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...