Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Struct Biol ; 213(2): 107729, 2021 06.
Article in English | MEDLINE | ID: mdl-33774138

ABSTRACT

Bacterial type III secretion systems assemble the axial structures of both injectisomes and flagella. Injectisome type III secretion systems subsequently secrete effector proteins through their hollow needle into a host, requiring co-ordination. In the Salmonella enterica serovar Typhimurium SPI-2 injectisome, this switch is triggered by sensing the neutral pH of the host cytoplasm. Central to specificity switching is a nonameric SctV protein with an N-terminal transmembrane domain and a toroidal C-terminal cytoplasmic domain. A 'gatekeeper' complex interacts with the SctV cytoplasmic domain in a pH dependent manner, facilitating translocon secretion while repressing effector secretion through a poorly understood mechanism. To better understand the role of SctV in SPI-2 translocon-effector specificity switching, we purified full-length SctV and determined its toroidal cytoplasmic region's structure using cryo-EM. Structural comparisons and molecular dynamics simulations revealed that the cytoplasmic torus is stabilized by its core subdomain 3, about which subdomains 2 and 4 hinge, varying the flexible outside cleft implicated in gatekeeper and substrate binding. In light of patterns of surface conservation, deprotonation, and structural motion, the location of previously identified critical residues suggest that gatekeeper binds a cleft buried between neighboring subdomain 4s. Simulations suggest that a local pH change from 5 to 7.2 stabilizes the subdomain 3 hinge and narrows the central aperture of the nonameric torus. Our results are consistent with a model of local pH sensing at SctV, where pH-dependent dynamics of SctV cytoplasmic domain affect binding of gatekeeper complex.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Salmonella typhimurium , Type III Secretion Systems/chemistry , Bacterial Proteins/genetics , Cryoelectron Microscopy , Cytoplasm/metabolism , Hydrogen-Ion Concentration , Models, Molecular , Molecular Dynamics Simulation , Protein Domains , Salmonella typhimurium/chemistry , Salmonella typhimurium/pathogenicity , Salmonella typhimurium/physiology , Type III Secretion Systems/metabolism
2.
mBio ; 11(1)2020 01 07.
Article in English | MEDLINE | ID: mdl-31911488

ABSTRACT

Bacterial flagella are reversible rotary motors that rotate external filaments for bacterial propulsion. Some flagellar motors have diversified by recruiting additional components that influence torque and rotation, but little is known about the possible diversification and evolution of core motor components. The mechanistic core of flagella is the cytoplasmic C ring, which functions as a rotor, directional switch, and assembly platform for the flagellar type III secretion system (fT3SS) ATPase. The C ring is composed of a ring of FliG proteins and a helical ring of surface presentation of antigen (SPOA) domains from the switch proteins FliM and one of two usually mutually exclusive paralogs, FliN or FliY. We investigated the composition, architecture, and function of the C ring of Campylobacter jejuni, which encodes FliG, FliM, and both FliY and FliN by a variety of interrogative approaches. We discovered a diversified C. jejuni C ring containing FliG, FliM, and both FliY, which functions as a classical FliN-like protein for flagellar assembly, and FliN, which has neofunctionalized into a structural role. Specific protein interactions drive the formation of a more complex heterooligomeric C. jejuni C-ring structure. We discovered that this complex C ring has additional cellular functions in polarly localizing FlhG for numerical regulation of flagellar biogenesis and spatial regulation of division. Furthermore, mutation of the C. jejuni C ring revealed a T3SS that was less dependent on its ATPase complex for assembly than were other systems. Our results highlight considerable evolved flagellar diversity that impacts motor output, biogenesis, and cellular processes in different species.IMPORTANCE The conserved core of bacterial flagellar motors reflects a shared evolutionary history that preserves the mechanisms essential for flagellar assembly, rotation, and directional switching. In this work, we describe an expanded and diversified set of core components in the Campylobacter jejuni flagellar C ring, the mechanistic core of the motor. Our work provides insight into how usually conserved core components may have diversified by gene duplication, enabling a division of labor of the ancestral protein between the two new proteins, acquisition of new roles in flagellar assembly and motility, and expansion of the function of the flagellum beyond motility, including spatial regulation of cell division and numerical control of flagellar biogenesis in C. jejuni Our results highlight that relatively small changes, such as gene duplications, can have substantial ramifications on the cellular roles of a molecular machine.


Subject(s)
Campylobacter jejuni/physiology , Flagella/physiology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Biological Evolution , Campylobacter jejuni/classification , Structure-Activity Relationship , Type III Secretion Systems
3.
PLoS One ; 11(11): e0164047, 2016.
Article in English | MEDLINE | ID: mdl-27855178

ABSTRACT

We show that by using a combination of computational methods, consistent three-dimensional molecular models can be proposed for the core proteins of the type-III secretion system. We employed a variety of approaches to reconcile disparate, and sometimes inconsistent, data sources into a coherent picture that for most of the proteins indicated a unique solution to the constraints. The range of difficulty spanned from the trivial (FliQ) to the difficult (FlhA and FliP). The uncertainties encountered with FlhA were largely the result of the greater number of helix packing possibilities allowed in a large protein, however, for FliP, there remains an uncertainty in how to reconcile the large displacement predicted between its two main helical hairpins and their ability to sit together happily across the bacterial membrane. As there is still no high resolution structural information on any of these proteins, we hope our predicted models may be of some use in aiding the interpretation of electron microscope images and in rationalising mutation data and experiments.


Subject(s)
Bacterial Proteins/metabolism , Flagella/metabolism , Models, Biological , Multiprotein Complexes/metabolism , Type III Secretion Systems , Bacterial Proteins/genetics , Computational Biology/methods , Databases, Genetic , Evolution, Molecular , Models, Molecular , Multiprotein Complexes/chemistry , Structure-Activity Relationship , Web Browser
SELECTION OF CITATIONS
SEARCH DETAIL
...