Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Toxics ; 12(6)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38922112

ABSTRACT

International shipping's particulate matter primary emissions have a share in global anthropogenic emissions of between 3% and 4%. Ship emissions of volatile organic compounds (VOCs) can play an important role in the formation of fine particulate matter. Using an aerosol box model for the near-plume scale, this study investigated how the changing VOC emission factor (EF) for ship engines impacts the formation of secondary PM2.5 in ship exhaust plumes that were detected during a measurement campaign. The agreement between measured and modeled particle number size distribution was improved by adjusting VOC emissions, in particular of intermediate-, low-, and extremely low-volatility compounds. The scaling of the VOC emission factor showed that the initial emission factor, based on literature data, had to be multiplied by 3.6 for all VOCs. Information obtained from the box model was integrated into a regional-scale chemistry transport model (CTM) to study the influence of changed VOC ship emissions over the Mediterranean Sea. The regional-scale CTM run with adjusted ship emissions indicated a change in PM2.5 of up to 5% at the main shipping routes and harbor cities in summer. Nevertheless, overall changes due to a change in the VOC EF were rather small, indicating that the size of grid cells in CTMs leads to a fast dilution.

2.
Ambio ; 51(3): 754-769, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34292520

ABSTRACT

Shipping is an important source of pollution affecting both atmospheric and aquatic environments. To allow for efficient mitigation of environmental degradation, it is essential to know the extent of the impacts of shipping in relation to other sources of pollution. Here, we give a perspective on a holistic approach to studies of the environmental impacts of operational shipping through presentation of an assessment framework developed and applied on a case of shipping in the Baltic Sea. Through transfer of knowledge and concepts, previously used in assessments of air pollution, now applied to assessments of marine pollution and underwater noise, the horizon of understanding of shipping-related impacts is significantly improved. It identifies the main areas of environmental degradation caused by shipping and potential improvements through legislation and technological development. However, as the vast majority of contaminants discharged into the sea are not routinely monitored and assessed, the links between pressure of contaminants from shipping and environmental state and impacts will not be caught in the current environmental regulatory frameworks.


Subject(s)
Air Pollution , Ships , Baltic States , Environment , Environmental Monitoring , Noise
3.
Environ Pollut ; 284: 117388, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34062441

ABSTRACT

Heavy fuel oil (HFO) accounts for approximately 80% of the fuel consumption of ocean-going ships in the world. Multiple toxic species are found in HFO exhaust, however, carbonaceous substances emitted from low-speed marine engine exhaust at different operating loads have not been thoroughly addressed. Therefore, a bench test for a low-speed marine engine with HFO fuel under different operating modes was carried out in this study. Emission factors and characteristics of CO2, CO, organic carbon (OC), elemental carbon (EC), as well as OC and EC fragments, organic matters of n-alkanes and polycyclic aromatic hydrocarbons (PAHs) are given and discussed. Combined with the correlation analysis results among the measured species and engine technical parameters, the formation processes and influence factors of carbonaceous components are also inferred in this study. Besides, together with OC to EC ratio, n-alkanes to PAHs ratio, etc., EC1 to soot-EC ratio in PM can be considered as tracer characteristic of high-sulfur-content HFO ship distinguished from diesel fuel ships. Profiles of n-alkanes and PAHs in PM can be used to distinguish shipping emission source from other combustion sources. Moreover, characteristics of carbonaceous components in size-segregated particles are also discussed, including OC, EC, OC and EC fragments, as well as organic matters. Results show that most of the particle mass, OC, EC, and organic matters are concentrated in fine particles with size of less than 1.1 µm, indicating the significance of ultrafine particles. Formation processes of OC and EC fragments, EC1 and soot-EC are also deduced and proved combined with the characteristics of OC and EC fragments, organic matters, and especially PAHs. Besides, the large variations of OC to EC ratios and speciated profiles of n-alkanes and PAHs in different particle size bins indicate that particle size should be considered when they are used as characteristic tracer in source apportionment studies.


Subject(s)
Air Pollutants , Fuel Oils , Air Pollutants/analysis , Carbon/analysis , Particle Size , Particulate Matter/analysis , Ships , Vehicle Emissions/analysis
4.
Toxics ; 10(1)2021 Dec 21.
Article in English | MEDLINE | ID: mdl-35051045

ABSTRACT

Air pollution by aerosol particles is mainly monitored as mass concentrations of particulate matter, such as PM10 and PM2.5. However, mass-based measurements are hardly representative for ultrafine particles (UFP), which can only be monitored adequately by particle number (PN) concentrations and are considered particularly harmful to human health. This study examines the dispersion of UFP in Hamburg city center and, in particular, the impact of passenger ferryboats by modeling PN concentrations and compares concentrations to measured values. To this end, emissions inventories and emission size spectra for different emission sectors influencing concentrations in the city center were created, explicitly considering passenger ferryboat traffic as an additional emission source. The city-scale chemical transport model EPISODE-CityChem is applied for the first time to simulate PN concentrations and additionally, observations of total particle number counts are taken at four different sampling sites in the city. Modeled UFP concentrations are in the range of 1.5-3 × 104 cm-3 at ferryboat piers and at the road traffic locations with particle sizes predominantly below 50 nm. Urban background concentrations are at 0.4-1.2 × 104 cm-3 with a predominant particle size in the range 50-100 nm. Ferryboat traffic is a significant source of emissions near the shore along the regular ferry routes. Modeled concentrations show slight differences to measured data, but the model is capable of reproducing the observed spatial variation of UFP concentrations. UFP show strong variations in both space and time, with day-to-day variations mainly controlled by differences in air temperature, wind speed and wind direction. Further model simulations should focus on longer periods of time to better understand the influence of meteorological conditions on UFP dynamics.

5.
Sci Total Environ ; 671: 189-207, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-30928749

ABSTRACT

The Baltic Sea is a severely eutrophicated sea-area where intense shipping as an additional nutrient source is a potential contributor to changes in the ecosystem. The impact of the two most important shipborne nutrients, nitrogen and phosphorus, on the overall nutrient-phytoplankton-oxygen dynamics in the Baltic Sea was determined by using the coupled physical and biogeochemical model system General Estuarine Transport Model-Ecological Regional Ocean Model (GETM-ERGOM) in a cascade with the Ship Traffic Emission Assessment Model (STEAM) and the Community Multiscale Air Quality (CMAQ) model. We compared two nutrient scenarios in the Baltic Sea: with (SHIP) and without nutrient input from ships (NOSHIP). The model uses the combined nutrient input from shipping-related waste streams and atmospheric depositions originating from the ship emission and calculates the effect of excess nutrients on the overall biogeochemical cycle, primary production, detritus formation and nutrient flows. The shipping contribution is about 0.3% of the total phosphorus and 1.25-3.3% of the total nitrogen input to the Baltic Sea, but their impact to the different biogeochemical variables is up to 10%. Excess nitrogen entering the N-limited system of the Baltic Sea slightly alters certain pathways: cyanobacteria growth is compromised due to extra nitrogen available for other functional groups while the biomass of diatoms and especially flagellates increases due to the excess of the limiting nutrient. In terms of the Baltic Sea ecosystem functioning, continuous input of ship-borne nitrogen is compensated by steady decrease of nitrogen fixation and increase of denitrification, which results in stationary level of total nitrogen content in the water. Ship-borne phosphorus input results in a decrease of phosphate content in the water and increase of phosphorus binding to sediments. Oxygen content in the water decreases, but reaches stationary state eventually.


Subject(s)
Environmental Monitoring , Eutrophication , Seawater/chemistry , Ships , Water Pollutants, Chemical/analysis , Nitrogen/analysis , Phosphorus/analysis
6.
Environ Sci Technol ; 52(8): 4910-4919, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29616816

ABSTRACT

Pollutants from fishing boats have generally been neglected worldwide, and there is an acute shortage of measured emission data, especially in China. Therefore, on-board measurements of pollutants emitted from 12 different fishing boats in China (including gill net, angling, and trawler boats) were carried out in this study to investigate emission factors (EFs), characteristics and total emissions. The average EFs for CO2, CO, NO x, PM, and SO2 were 3074 ± 55.9, 50.6 ± 31.7, 54.2 ± 30.7, 9.54 ± 2.24, and 5.94 ± 6.38 g (kg fuel)-1, respectively, which were higher than those from previous studies of fishing boats. When compared to medium-speed and slow-speed engine vessels, high-speed engines on fishing boats had higher CO EFs but lower NO x EFs. Notably, when fishing boats were in low-load conditions, they always had higher EFs of CO, PM, and NO2 compared to other operating modes. The estimated results showed that emissions from motor-powered fishing boats in China in 2012 (232, 379, and 61.8 kt CO, NO x and PM) accounted for 10.7%, 10.9%, and 19.3% of the total CO, NO x and PM emitted from nonroad mobile sources, which means significant contribution of fishing boats to air pollution, especially in southern China areas.


Subject(s)
Air Pollutants , Environmental Pollutants , China , Environmental Monitoring , Gases , Particulate Matter , Ships , Vehicle Emissions
7.
J Air Waste Manag Assoc ; 68(8): 763-800, 2018 08.
Article in English | MEDLINE | ID: mdl-29364776

ABSTRACT

Poor air quality is still a threat for human health in many parts of the world. In order to assess measures for emission reductions and improved air quality, three-dimensional atmospheric chemistry transport modeling systems are used in numerous research institutions and public authorities. These models need accurate emission data in appropriate spatial and temporal resolution as input. This paper reviews the most widely used emission inventories on global and regional scales and looks into the methods used to make the inventory data model ready. Shortcomings of using standard temporal profiles for each emission sector are discussed, and new methods to improve the spatiotemporal distribution of the emissions are presented. These methods are often neither top-down nor bottom-up approaches but can be seen as hybrid methods that use detailed information about the emission process to derive spatially varying temporal emission profiles. These profiles are subsequently used to distribute bulk emissions such as national totals on appropriate grids. The wide area of natural emissions is also summarized, and the calculation methods are described. Almost all types of natural emissions depend on meteorological information, which is why they are highly variable in time and space and frequently calculated within the chemistry transport models themselves. The paper closes with an outlook for new ways to improve model ready emission data, for example, by using external databases about road traffic flow or satellite data to determine actual land use or leaf area. In a world where emission patterns change rapidly, it seems appropriate to use new types of statistical and observational data to create detailed emission data sets and keep emission inventories up-to-date. IMPLICATIONS: Emission data are probably the most important input for chemistry transport model (CTM) systems. They need to be provided in high spatial and temporal resolution and on a grid that is in agreement with the CTM grid. Simple methods to distribute the emissions in time and space need to be replaced by sophisticated emission models in order to improve the CTM results. New methods, e.g., for ammonia emissions, provide grid cell-dependent temporal profiles. In the future, large data fields from traffic observations or satellite observations could be used for more detailed emission data.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Environmental Monitoring/methods , Models, Theoretical , Air Pollutants/chemistry , Humans
8.
Environ Pollut ; 194: 1-10, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25078659

ABSTRACT

We investigated the isotopic composition of atmospheric NO3(-) deposition at a moderately polluted site in Western Europe over an annual cycle from December 2011 to November 2012. On average, we measured load-weighted δ(15)N values of +0.1 and +3.0‰ in wet and dry deposition, respectively. A comparison to source-specific N emission trends and to isotope data from the 1980s reveals distinct changes in δ(15)N-NO3(-) values: In contrast to the increasing relative importance of isotopically depleted natural NOx sources, we find an increase of isotope values in comparison to historical data. We explore the role of land-based N sources, because backward trajectories reveal a correlation of higher δ(15)N to air mass origin from industrialized areas. Nowadays isotopically enriched NOx of coal-fired power plants using selective catalytic converters and land-based vehicle emissions, which use same technology, are apparently the main driver of rising δ(15)N values in nitrate deposition.


Subject(s)
Air Pollutants/analysis , Atmosphere/chemistry , Environmental Monitoring , Nitrates/analysis , Air Pollution , Europe , Germany , Isotopes/analysis , Nitrogen Oxides/analysis
9.
Environ Pollut ; 158(6): 2241-50, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20226578

ABSTRACT

As a consequence of the global distribution of manufacturing sites and the increasing international division of labour, ship traffic is steadily increasing and is becoming more and more important as an origin of air pollution. This study investigates the impact of ship emissions in coastal areas of the North Sea under conditions of the year 2000 by means of a regional chemistry transport model which runs on a sufficiently high resolution to study air pollution in coastal regions. It was found that northern Germany and Denmark in summer suffer from more than 50% higher sulphate, nitrate and ammonium aerosol concentrations due to contributions from ships. The implementation of a sulphur emission control area (SECA) in the North Sea, as it was implemented at the end of 2007, directly results in reduced sulphur dioxide and sulphate aerosol concentrations while nitrate aerosol concentrations are slightly increased.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Ships , Vehicle Emissions/analysis , Air Movements , Denmark , Germany , Models, Theoretical , Oceans and Seas , Seasons
10.
Environ Pollut ; 158(5): 1221-7, 2010 May.
Article in English | MEDLINE | ID: mdl-20185217

ABSTRACT

Twenty precipitation samples were taken concurrently with air samples at a northern German monitoring site over a period of 7 months in 2007 and 2008. Thirty four poly- and perfluorinated compounds (PFC) were determined in rain water samples by solid phase extraction and HPLC-MS/MS analysis. Seventeen compounds were detected in rain water with SigmaPFC concentrations ranging from 1.6 ng L(-1) to 48.6 ng L(-1). Perfluorooctanoate (PFOA) and perfluorobutanate (PFBA) were the compounds that were usually observed in highest concentrations. Calculated SigmaPFC deposition rates were between 2 and 91 ng m(-2) d(-1). These findings indicate that particle phase PFC are deposited from the atmosphere by precipitation. A relationship between PFC wet deposition and air concentration may be established via precipitation amounts. Trajectory analysis revealed that PFC concentration and deposition estimates in precipitation can only be explained if a detailed air mass history is considered.


Subject(s)
Environmental Monitoring , Environmental Pollutants/analysis , Fluorocarbons/analysis , Rain/chemistry , Germany
11.
Environ Sci Technol ; 43(11): 4029-36, 2009 Jun 01.
Article in English | MEDLINE | ID: mdl-19569326

ABSTRACT

Per- and polyfluorinated organic compounds (PFC) in air were determined in samples taken at two sites in the vicinity of Hamburg, Germany, over a period of 14 months. PUF/XAD-2/PUF cartridges and glass fiber filters were applied for the collection of airborne PFC. A set of volatile, neutral PFCs such as fluorotelomer alcohols (FTOH) or perfluorinated sulfonamides and ionic, nonvolatile PFC like perfluorinated carboxylates and sulfonates were determined using GC-MS and HPLC-MS/MS. Backward trajectory analysis was performed to elucidate the origin of the air mass parcels sampled. PFCs were predominantly detected in the gas phase. A fluctuating baseline presenting north German background levels and singular events of high concentrations were characteristic for the time series of all analytes and both locations. The origin of sampled air was the driving parameter influencing the PFC levels. Elevated PFC concentrations occurred in air arriving from industrialized and populated regions west and southwest of Hamburg. Maximum individual PFC concentrations reached 600 pg m(-3) (8:2 FTOH) in the gas phase and 13 pg m(-3) (perfluorooctane sulfonate) in the particle phase. The class of FTOH clearly dominated the gas-phase substance spectrum. The compound that was detected in highest concentrations was 8:2 FTOH. Individual gas-phase PFC concentrations were higher in summer than in winter. Temperature-dependent emissions of volatile and semi-volatile PFCs from diffuse sources to the gas phase are presumed to be responsible for this observation.


Subject(s)
Air Pollutants/chemistry , Hydrocarbons, Fluorinated/chemistry , Air Pollution , Environmental Monitoring , Germany , Time Factors
12.
Appl Opt ; 43(28): 5370-85, 2004 Oct 01.
Article in English | MEDLINE | ID: mdl-15495429

ABSTRACT

An intercomparison of the algorithms used to retrieve aerosol extinction and backscatter starting from Raman lidar signals has been performed by 11 groups of lidar scientists involved in the European Aerosol Research Lidar Network (EARLINET). This intercomparison is part of an extended quality assurance program performed on aerosol lidars in the EARLINET. Lidar instruments and aerosol backscatter algorithms were tested separately. The Raman lidar algorithms were tested by use of synthetic lidar data, simulated at 355, 532, 386, and 607 nm, with realistic experimental and atmospheric conditions taken into account. The intercomparison demonstrates that the data-handling procedures used by all the lidar groups provide satisfactory results. Extinction profiles show mean deviations from the correct solution within 10% in the planetary boundary layer (PBL), and backscatter profiles, retrieved by use of algorithms based on the combined Raman elastic-backscatter lidar technique, show mean deviations from solutions within 20% up to 2 km. The intercomparison was also carried out for the lidar ratio and produced profiles that show a mean deviation from the solution within 20% in the PBL. The mean value of this parameter was also calculated within a lofted aerosol layer at higher altitudes that is representative of typical layers related to special events such as Saharan dust outbreaks, forest fires, and volcanic eruptions. Here deviations were within 15%.

13.
Appl Opt ; 43(4): 977-89, 2004 Feb 01.
Article in English | MEDLINE | ID: mdl-14960094

ABSTRACT

An intercomparison of aerosol backscatter lidar algorithms was performed in 2001 within the framework of the European Aerosol Research Lidar Network to Establish an Aerosol Climatology (EARLINET). The objective of this research was to test the correctness of the algorithms and the influence of the lidar ratio used by the various lidar teams involved in the EARLINET for calculation of backscatter-coefficient profiles from the lidar signals. The exercise consisted of processing synthetic lidar signals of various degrees of difficulty. One of these profiles contained height-dependent lidar ratios to test the vertical influence of those profiles on the various retrieval algorithms. Furthermore, a realistic incomplete overlap of laser beam and receiver field of view was introduced to remind the teams to take great care in the nearest range to the lidar. The intercomparison was performed in three stages with increasing knowledge on the input parameters. First, only the lidar signals were distributed; this is the most realistic stage. Afterward the lidar ratio profiles and the reference values at calibration height were provided. The unknown height-dependent lidar ratio had the largest influence on the retrieval, whereas the unknown reference value was of minor importance. These results show the necessity of making additional independent measurements, which can provide us with a suitable approximation of the lidar ratio. The final stage proves in general, that the data evaluation schemes of the different groups of lidar systems work well.

SELECTION OF CITATIONS
SEARCH DETAIL
...