Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 88(4): 2246-59, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24390324

ABSTRACT

Hantaviruses successfully replicate in primary human endothelial cells by restricting the early induction of beta interferon (IFN-ß) and interferon-stimulated genes (ISGs). Gn proteins from NY-1V, ANDV, and TULV, but not PHV, harbor elements in their 142-residue cytoplasmic tails (GnTs) that inhibit RIG-I/MAVS/TBK1-TRAF3-directed IFN-ß induction. Here, we define GnT interactions and residues required to inhibit TRAF3-TBK1-directed IFN-ß induction and IRF3 phosphorylation. We observed that GnTs bind TRAF3 via residues within the TRAF-N domain (residues 392 to 415) and that binding is independent of the MAVS-interactive TRAF-C domain (residues 415 to 568). We determined that GnT binding to TRAF3 is mediated by C-terminal degrons within NY-1V or ANDV GnTs and that mutations that add degrons to TULV or PHV GnTs confer TRAF3 binding. Further analysis of GnT domains revealed that TRAF3 binding is a discrete GnT function, independent of IFN regulation, and that residues 15 to 42 from the NY-1V GnT C terminus are required for inhibiting TBK1-directed IFN-ß transcription. Mutagenesis of the NY-1V GnT revealed that altering tyrosine 627 (Y627A/S/F) abolished GnT regulation of RIG-I/TBK1-directed IRF3 phosphorylation and transcriptional responses of ISRE, κB, and IFN-ß promoters. Moreover, GnTs from NY-1V, ANDV, and TULV, but not PHV, inhibited RIG-I-directed IRF3 phosphorylation. Collectively, these findings suggest a novel role for GnTs in regulating RIG-I/TBK1 pathway-directed IRF3 phosphorylation and IFN-ß induction and define virulence determinants within GnTs that may permit the attenuation of pathogenic hantaviruses. IMPORTANCE These findings provide a mechanism for selected hantavirus GnT interactions to regulate RIG-I/TBK1 signaling responses required for IFN-ß induction by inhibiting TBK1 phosphorylation of IRF3. These studies culminate in showing that a single GnT residue, Y627, is required for the NY-1V GnT to inhibit RIG-I/TBK1-directed IRF3 phosphorylation and IFN-ß induction. These findings define a potential virulence determinant within the NY-1V GnT that may permit hantavirus attenuation.


Subject(s)
Gene Expression Regulation, Viral/immunology , Interferon-beta/antagonists & inhibitors , Orthohantavirus/genetics , Signal Transduction/immunology , TNF Receptor-Associated Factor 3/metabolism , Viral Envelope Proteins/metabolism , Virus Replication/physiology , Animals , Blotting, Western , COS Cells , Chlorocebus aethiops , HEK293 Cells , Orthohantavirus/physiology , Humans , Immunoprecipitation , Interferon Regulatory Factor-3/metabolism , Interferon-beta/metabolism , Mutagenesis , Phosphorylation , Protein Binding , Protein Serine-Threonine Kinases/metabolism , Receptors, Retinoic Acid/metabolism , Signal Transduction/genetics
2.
Virus Res ; 187: 65-71, 2014 Jul 17.
Article in English | MEDLINE | ID: mdl-24412542

ABSTRACT

Hantaviruses predominantly replicate in primary human endothelial cells and cause 2 diseases characterized by altered barrier functions of vascular endothelium. Most hantaviruses restrict the early induction of interferon-ß (IFNß) and interferon stimulated genes (ISGs) within human endothelial cells to permit their successful replication. PHV fails to regulate IFN induction within human endothelial cells which self-limits PHV replication and its potential as a human pathogen. These findings, and the altered regulation of endothelial cell barrier functions by pathogenic hantaviruses, suggest that virulence is determined by the ability of hantaviruses to alter key signaling pathways within human endothelial cells. Our findings indicate that the Gn protein from ANDV, but not PHV, inhibits TBK1 directed ISRE, kB and IFNß induction through virulence determinants in the Gn cytoplasmic tail (GnT) that inhibit TBK1 directed IRF3 phosphorylation. Further studies indicate that in response to hypoxia induced VEGF, ANDV infection enhances the permeability and adherens junction internalization of microvascular and lymphatic endothelial cells. These hypoxia/VEGF directed responses are rapamycin sensitive and directed by mTOR signaling pathways. These results demonstrate the presence of at least two hantavirus virulence determinants that act on endothelial cell signaling pathways: one that regulates antiviral IFN signaling responses, and a second that enhances normal hypoxia-VEGF-mTOR signaling pathways to facilitate endothelial cell permeability. These findings suggest signaling pathways as potential targets for therapeutic regulation of vascular deficits that contribute to hantavirus diseases and viral protein targets for attenuating pathogenic hantaviruses.


Subject(s)
Hantavirus Infections/immunology , Hypoxia/immunology , Interferon Regulatory Factors/genetics , Interferon-beta/antagonists & inhibitors , Orthohantavirus/pathogenicity , Antigens, CD/genetics , Antigens, CD/immunology , Cadherins/genetics , Cadherins/immunology , Capillaries/pathology , Capillaries/virology , Capillary Permeability , Endothelial Cells/immunology , Endothelial Cells/pathology , Endothelial Cells/virology , Endothelium, Vascular/immunology , Endothelium, Vascular/pathology , Endothelium, Vascular/virology , Gene Expression Regulation , Orthohantavirus/genetics , Hantavirus Infections/complications , Hantavirus Infections/genetics , Hantavirus Infections/virology , Host-Pathogen Interactions , Humans , Hypoxia/complications , Hypoxia/genetics , Hypoxia/virology , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/immunology , Interferon Regulatory Factors/immunology , Interferon-beta/biosynthesis , Interferon-beta/immunology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/immunology , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/immunology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/immunology , Virulence , Virus Replication
3.
Adv Virol ; 2012: 524024, 2012.
Article in English | MEDLINE | ID: mdl-22924041

ABSTRACT

Hantaviruses primarily infect human endothelial cells (ECs) and cause two highly lethal human diseases. Early addition of Type I interferon (IFN) to ECs blocks hantavirus replication and thus for hantaviruses to be pathogenic they need to prevent early interferon induction. PHV replication is blocked in human ECs, but not inhibited in IFN deficient VeroE6 cells and consistent with this, infecting ECs with PHV results in the early induction of IFNß and an array of interferon stimulated genes (ISGs). In contrast, ANDV, HTNV, NY-1V and TULV hantaviruses, inhibit early ISG induction and successfully replicate within human ECs. Hantavirus inhibition of IFN responses has been attributed to several viral proteins including regulation by the Gn proteins cytoplasmic tail (Gn-T). The Gn-T interferes with the formation of STING-TBK1-TRAF3 complexes required for IRF3 activation and IFN induction, while the PHV Gn-T fails to alter this complex or regulate IFN induction. These findings indicate that interfering with early IFN induction is necessary for hantaviruses to replicate in human ECs, and suggest that additional determinants are required for hantaviruses to be pathogenic. The mechanism by which Gn-Ts disrupt IFN signaling is likely to reveal potential therapeutic interventions and suggest protein targets for attenuating hantaviruses.

4.
Adv Virol ; 2012: 467059, 2012.
Article in English | MEDLINE | ID: mdl-22811711

ABSTRACT

American hantaviruses cause a highly lethal acute pulmonary edema termed hantavirus pulmonary syndrome (HPS). Hantaviruses nonlytically infect endothelial cells and cause dramatic changes in barrier functions of the endothelium without disrupting the endothelium. Instead hantaviruses cause changes in the function of infected endothelial cells that normally regulate fluid barrier functions of capillaries. The endothelium of arteries, veins, and lymphatic vessels is unique and central to the function of vast pulmonary capillary beds, which regulate pulmonary fluid accumulation. The endothelium maintains vascular barrier functions through a complex series of redundant receptors and signaling pathways that serve to both permit fluid and immune cell efflux into tissues and restrict tissue edema. Infection of the endothelium provides several mechanisms for hantaviruses to alter capillary permeability but also defines potential therapeutic targets for regulating acute pulmonary edema and HPS disease. Here we discuss interactions of HPS causing hantaviruses with the endothelium, potential endothelial cell-directed permeability mechanisms, and therapeutic targeting of the endothelium as a means of reducing the severity of HPS disease.

5.
J Virol ; 85(10): 4752-60, 2011 May.
Article in English | MEDLINE | ID: mdl-21367904

ABSTRACT

Hantaviruses primarily infect the endothelial cell lining of capillaries and cause two vascular permeability-based diseases. The ability of pathogenic hantaviruses to regulate the early induction of interferon determines whether hantaviruses replicate in endothelial cells. Tula virus (TULV) and Prospect Hill virus (PHV) are hantaviruses which infect human endothelial cells but fail to cause human disease. PHV is unable to inhibit early interferon (IFN) responses and fails to replicate within human endothelial cells. However, TULV replicates successfully in human endothelial cells, suggesting that TULV is capable of regulating cellular IFN responses. We observed a >300-fold reduction in the IFN-stimulated genes (ISGs) MxA and ISG56 following TULV versus PHV infection of endothelial cells 1 day postinfection. Similar to results with pathogenic hantaviruses, expressing the TULV Gn protein cytoplasmic tail (Gn-T) blocked RIG-I- and TBK1-directed transcription from IFN-stimulated response elements (ISREs) and IFN-ß promoters (>90%) but not transcription directed by constitutively active IFN regulatory factor-3 (IRF3). In contrast, expressing the PHV Gn-T had no effect on TBK1-induced transcriptional responses. Analysis of Gn-T truncations demonstrated that the C-terminal 42 residues of the Gn-T (Gn-T-C42) from TULV, but not PHV, inhibited IFN induction >70%. These findings demonstrate that the TULV Gn-T inhibits IFN- and ISRE-directed responses upstream of IRF3 at the level of the TBK1 complex and further define a 42-residue domain of the TULV Gn-T that inhibits IFN induction. In contrast to pathogenic hantavirus Gn-Ts, the TULV Gn-T lacks a C-terminal degron domain and failed to bind tumor necrosis factor (TNF) receptor-associated factor 3 (TRAF3), a TBK1 complex component required for IRF3 activation. These findings indicate that the nonpathogenic TULV Gn-T regulates IFN induction but accomplishes this via unique interactions with cellular TBK1 complexes. These findings fundamentally distinguish nonpathogenic hantaviruses, PHV and TULV, and demonstrate that IFN regulation alone is insufficient for hantaviruses to cause disease. Yet regulating the early IFN response is necessary for hantaviruses to replicate within human endothelial cells and to be pathogenic. Thus, in addition to IFN regulation, hantaviruses contain discrete virulence determinants which permit them to be human pathogens.


Subject(s)
Host-Pathogen Interactions , Interferons/biosynthesis , Orthohantavirus/immunology , Orthohantavirus/pathogenicity , Viral Proteins/metabolism , Animals , Cell Line , Down-Regulation , Gene Expression Profiling , Humans , Interferons/antagonists & inhibitors
6.
J Virol ; 84(1): 352-60, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19846530

ABSTRACT

Andes virus (ANDV) causes a fatal hantavirus pulmonary syndrome (HPS) in humans and Syrian hamsters. Human alpha(v)beta(3) integrins are receptors for several pathogenic hantaviruses, and the function of alpha(v)beta(3) integrins on endothelial cells suggests a role for alpha(v)beta(3) in hantavirus directed vascular permeability. We determined here that ANDV infection of human endothelial cells or Syrian hamster-derived BHK-21 cells was selectively inhibited by the high-affinity alpha(v)beta(3) integrin ligand vitronectin and by antibodies to alpha(v)beta(3) integrins. Further, antibodies to the beta(3) integrin PSI domain, as well as PSI domain polypeptides derived from human and Syrian hamster beta(3) subunits, but not murine or bovine beta(3), inhibited ANDV infection of both BHK-21 and human endothelial cells. These findings suggest that ANDV interacts with beta(3) subunits through PSI domain residues conserved in both Syrian hamster and human beta(3) integrins. Sequencing the Syrian hamster beta(3) integrin PSI domain revealed eight differences between Syrian hamster and human beta(3) integrins. Analysis of residues within the PSI domains of human, Syrian hamster, murine, and bovine beta(3) integrins identified unique proline substitutions at residues 32 and 33 of murine and bovine PSI domains that could determine ANDV recognition. Mutagenizing the human beta(3) PSI domain to contain the L33P substitution present in bovine beta(3) integrin abolished the ability of the PSI domain to inhibit ANDV infectivity. Conversely, mutagenizing either the bovine PSI domain, P33L, or the murine PSI domain, S32P, to the residue present human beta(3) permitted PSI mutants to inhibit ANDV infection. Similarly, CHO cells transfected with the full-length bovine beta(3) integrin containing the P33L mutation permitted infection by ANDV. These findings indicate that human and Syrian hamster alpha(v)beta(3) integrins are key receptors for ANDV and that specific residues within the beta(3) integrin PSI domain are required for ANDV infection. Since L33P is a naturally occurring human beta(3) polymorphism, these findings further suggest the importance of specific beta(3) integrin residues in hantavirus infection. These findings rationalize determining the role of beta(3) integrins in hantavirus pathogenesis in the Syrian hamster model.


Subject(s)
Amino Acid Substitution , Integrin beta3/metabolism , Orthohantavirus/pathogenicity , Receptors, Virus/genetics , Animals , Binding Sites , Cattle , Cell Line , Cricetinae , Endothelial Cells/virology , Humans , Mesocricetus , Mice , Polymorphism, Genetic , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...