Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 24(20): 202001, 2013 May 24.
Article in English | MEDLINE | ID: mdl-23598286

ABSTRACT

Antimonide semiconductors are suitable for low-power electronics and long-wavelength optoelectronic applications. In recent years research on antimonide nanowires has become a rapidly growing field, and nano-materials have promising applications in fundamental physics research, for tunnel field-effect transistors, and long-wavelength detectors. In this review, we give an overview of the field of antimonide nanowires, beginning with a description of the synthesis of these nano-materials. Here we summarize numerous reports on antimonide nanowire growth, with the aim to give an overall picture of the distinctive properties of antimonide nanowire synthesis. Secondly, we review the data on the physical properties and emerging applications for antimonide nanowires, focusing on applications in electronics and optics.

2.
Nanotechnology ; 20(49): 495606, 2009 Dec 09.
Article in English | MEDLINE | ID: mdl-19904026

ABSTRACT

We demonstrate the growth of InSb-based nanowire heterostructures by metalorganic vapour phase epitaxy and use it to integrate InSb on extremely lattice-mismatched III-V nanowire templates made of InAs, InP, and GaAs. Influence of temperature, V/III ratio, and diameter are investigated in order to investigate the growth rate and morphology. The range of growth temperatures used for InSb nanowire growth is very similar to that used for planar growth due to the nature of the precursor decomposition. This makes optimization of growth parameters very important, and more difficult than for most other nanowire III-V materials. Analysis of the InSb nanowire epitaxial quality when grown on InAs, InP, and GaAs, along with InSb segment and particle compositions are reported. This successful direct integration of InSb nanowires, on nanowire templates with unprecedented strain levels show great promise for fabrication of vertical InSb devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...