Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 5611, 2024 03 07.
Article in English | MEDLINE | ID: mdl-38454089

ABSTRACT

Fluorescent molecule-based direct labeling of amplified DNA is a sensitive method employed across diverse DNA detection and diagnostics systems. However, using pre-labeled primers only allows for the attachment of a single fluorophore to each DNA strand and any modifications of the system are less flexible, requiring new sets of primers. As an alternative, direct labeling of amplified products with modified nucleotides is available, but still poorly characterized. To address these limitations, we sought a direct and adaptable approach to label amplicons produced through Loop-mediated isothermal amplification (LAMP), using labeled nucleotides (dUTPs) rather than primers. The focus of this study was the development and examination of a direct labeling technique of specific genes, including those associated with drug resistance in Mycobacterium tuberculosis. We used 5-(3-Aminoallyl)-2'-deoxyuridine-5'triphosphate, tagged with 5/6-TAMRA (TAMRA-dUTP) for labeling LAMP amplicons during the amplification process and characterized amplification and incorporation efficiency. The optimal TAMRA-dUTP concentration was first determined based on amplification efficiency (0.5% to total dNTPs). Higher concentrations of modified nucleotides reduced or completely inhibited the amplification yield. Target size also showed to be determinant to the success of amplification, as longer sequences showed lower amplification rates, thus less TAMRA incorporated amplicons. Finally, we were able to successfully amplify all four M. tuberculosis target genes using LAMP and TAMRA-modified dUTPs.


Subject(s)
Molecular Diagnostic Techniques , Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Nucleic Acid Amplification Techniques/methods , DNA , DNA Primers/genetics , Tuberculosis/diagnosis , Sensitivity and Specificity
2.
Methods Mol Biol ; 2511: 117-131, 2022.
Article in English | MEDLINE | ID: mdl-35838956

ABSTRACT

Since the original SARS-CoV-2 virus emerged from Wuhan, China, in late December 2019, a number of variants have arisen with enhanced infectivity, and some may even be capable of escaping the existing vaccines. Here we describe a rapid automated nucleic acid microarray hybridization and readout in less than 15 min using the Fraunhofer lab-on-a-chip platform for identification of bacterial species and antibiotic resistance. This platform allows a fast adaptation of new biomarkers enabling identification of different genes and gene mutations, such as those seen in the case the SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , China , Humans , Lab-On-A-Chip Devices , SARS-CoV-2/genetics
3.
Methods Mol Biol ; 2511: 235-244, 2022.
Article in English | MEDLINE | ID: mdl-35838964

ABSTRACT

Most people infected by the SARS-CoV-2 virus which causes COVID-19 disease experience mild or no symptoms. Severe forms of the disease are often marked by a hyper-inflammatory response known as a cytokine storm. Thus, biomarker tests which can identify these patients and place them on the appropriate treatment regime at the earliest possible phase would help to improve outcomes. Here we describe an automated microarray-based immunoassay using the Fraunhofer lab-on-a-chip platform for analysis of C-reactive protein due to its role in the hyper-inflammatory response.


Subject(s)
COVID-19 , COVID-19/diagnosis , Cytokines/metabolism , Humans , Immunoassay , Lab-On-A-Chip Devices , SARS-CoV-2
4.
J Anim Ecol ; 85(5): 1352-60, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27146262

ABSTRACT

Artificial lights have become an integral and welcome part of our urban and peri-urban environments. However, recent research has highlighted the potentially negative ecological consequences of ubiquitous artificial light. In particular, insects, especially moths, are expected to be negatively impacted by the presence of artificial lights. Previous research with light traps has shown a male-biased attraction to light in moths. In this study, we sought to determine whether street lights could limit moth dispersal and whether there was any sex bias in attraction to light. More specifically, we aimed to determine sex-specific attraction radii for moths to street lights. We tested these hypotheses by collecting moths for 2 years at an experimental set-up. To estimate the attraction radii, we developed a Markov model and related it to the acquired data. Utilizing multinomial statistics, we found that attraction rates to lights in the middle of the matrix were substantially lower than predicted by the null hypothesis of equal attraction level (0·44 times). With the Markov model, we estimated that a corner light was 2·77 times more attractive than a wing light with an equivalentre attraction radius of c. 23 m around each light. We found neither sexual differences in the attraction rate nor in the attraction radius of males and females. Since we captured three times more males than females, we conclude that sex ratios are representative of operational sex ratios or of different flight activities. These results provide evidence for street lights to limit moth dispersal, and that they seem to act equally on male and female moths. Consequently, public lighting might divide a suitable landscape into many small habitats. Therefore, it is reasonable to assume (i) that public lighting near hedges and bushes or field margins reduces the quality of these important habitat structures and (ii) that public lighting may affect moth movement between patches.


Subject(s)
Lighting , Moths/physiology , Phototaxis , Animal Distribution , Animals , Female , Germany , Male , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...