Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain ; 144(7): 2214-2226, 2021 08 17.
Article in English | MEDLINE | ID: mdl-33787890

ABSTRACT

Accumulation of amyloid-ß is a key neuropathological feature in brain of Alzheimer's disease patients. Alterations in cerebral haemodynamics, such as arterial impulse propagation driving the (peri)vascular CSF flux, predict future Alzheimer's disease progression. We now present a non-invasive method to quantify the three-dimensional propagation of cardiovascular impulses in human brain using ultrafast 10 Hz magnetic resonance encephalography. This technique revealed spatio-temporal abnormalities in impulse propagation in Alzheimer's disease. The arrival latency and propagation speed both differed in patients with Alzheimer's disease. Our mapping of arterial territories revealed Alzheimer's disease-specific modifications, including reversed impulse propagation around the hippocampi and in parietal cortical areas. The findings imply that pervasive abnormality in (peri)vascular CSF impulse propagation compromises vascular impulse propagation and subsequently glymphatic brain clearance of amyloid-ß in Alzheimer's disease.


Subject(s)
Alzheimer Disease/physiopathology , Brain/blood supply , Brain/physiopathology , Cerebrovascular Circulation , Aged , Amyloid beta-Peptides/metabolism , Brain Mapping/methods , Cardiovascular Physiological Phenomena , Cerebrovascular Circulation/physiology , Female , Glymphatic System/physiopathology , Hemodynamics , Humans , Magnetic Resonance Imaging , Male , Middle Aged
2.
Sci Rep ; 10(1): 21559, 2020 12 09.
Article in English | MEDLINE | ID: mdl-33298996

ABSTRACT

Biomarkers sensitive to prodromal or early pathophysiological changes in Alzheimer's disease (AD) symptoms could improve disease detection and enable timely interventions. Changes in brain hemodynamics may be associated with the main clinical AD symptoms. To test this possibility, we measured the variability of blood oxygen level-dependent (BOLD) signal in individuals from three independent datasets (totaling 80 AD patients and 90 controls). We detected a replicable increase in brain BOLD signal variability in the AD populations, which constituted a robust biomarker for clearly differentiating AD cases from controls. Fast BOLD scans showed that the elevated BOLD signal variability in AD arises mainly from cardiovascular brain pulsations. Manifesting in abnormal cerebral perfusion and cerebrospinal fluid convection, present observation presents a mechanism explaining earlier observations of impaired glymphatic clearance associated with AD in humans.


Subject(s)
Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Cerebrovascular Circulation/physiology , Heart Rate/physiology , Hemodynamics/physiology , Respiratory Rate/physiology , Aged , Alzheimer Disease/physiopathology , Blood Pressure/physiology , Brain/physiopathology , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...