Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 16(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38732644

ABSTRACT

Diet is integral to the healthy ageing process and certain diets can mitigate prolonged and deleterious inflammation. This review aims to assess the impact of diets high in sustainably sourced proteins on nutrient intake, gut, and age-related health in older adults. A systematic search of the literature was conducted on 5 September 2023 across multiple databases and sources. Studies assessing sustainably sourced protein consumption in community dwelling older adults (≥65 years) were included. Risk of bias (RoB) was assessed using 'RoB 2.0' and 'ROBINS-E'. Narrative synthesis was performed due to heterogeneity of studies. Twelve studies involving 12,166 older adults were included. Nine studies (n = 10,391) assessed habitual dietary intake and had some RoB concerns, whilst three studies (n = 1812), two with low and one with high RoB, conducted plant-based dietary interventions. Increased adherence to sustainably sourced diets was associated with improved gut microbial factors (n = 4640), healthier food group intake (n = 2142), and increased fibre and vegetable protein intake (n = 1078). Sustainably sourced diets positively impacted on gut microbiota and healthier intake of food groups, although effects on inflammatory outcomes and health status were inconclusive. Future research should focus on dietary interventions combining sustainable proteins and fibre to evaluate gut barrier function and consider inflammatory and body composition outcomes in older adults.


Subject(s)
Dietary Proteins , Gastrointestinal Microbiome , Humans , Aged , Gastrointestinal Microbiome/physiology , Dietary Proteins/administration & dosage , Female , Male , Aged, 80 and over , Diet , Dietary Fiber/administration & dosage , Diet, Healthy , Eating/physiology , Independent Living
2.
Appetite ; 143: 104411, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31445052

ABSTRACT

Growing evidence suggests circadian rhythms, nutrition and metabolism are intimately linked. Intermittent fasting (IMF) has become an increasingly popular intervention for metabolic health and combining IMF with exercise may lead to benefits for weight management. However, little is known about the diurnal variation of fasted exercise. This study aimed to investigate the diurnal influences on gastric emptying rate (GER), metabolic responses, and appetite to fasted and non-fasted exercise. Twelve healthy males completed four 45 min walks in a randomised order. Walks were completed in the morning (AM) and evening (PM) and either fasted (FASTED) or after consumption of a standardised meal (FED). GER of a semi-solid lunch was subsequently measured for 2 h using the 13C breath test. Blood glucose concentration, substrate utilisation, and ratings of appetite were measured throughout. Energy intake was also assessed for the following 24 h. GER Tlag was slower in PM-FASTED compared to AM-FASTED, AM-FED, and PM-FED (75 ±â€¯18 min vs. 63 ±â€¯14 min, P = 0.001, vs. 65 ±â€¯10 min, P = 0.028 and vs. 67 ±â€¯16 min, P = 0.007). Blood glucose concentration was greater in the FED trials in comparison to the FASTED trials pre-lunch (P < 0.05). Fat oxidation was greater throughout exercise in both FASTED trials compared to FED, and remained higher in FASTED trials than fed trials post-exercise until 30 min post-lunch ingestion (all P < 0.05). No differences were found for appetite post-lunch (P > 0.05) or 24 h post-energy intake (P = 0.476). These findings suggest that evening fasted exercise results in delayed GER, without changes in appetite. No compensatory effects were observed for appetite, and 24 h post-energy intake for both fasted exercise trials, therefore, increased fat oxidation holds positive implications for weight management.


Subject(s)
Appetite/physiology , Circadian Rhythm/physiology , Fasting/metabolism , Gastric Emptying/physiology , Walking/physiology , Adult , Cross-Over Studies , Eating/physiology , Energy Metabolism , Healthy Volunteers , Humans , Male , Meals , Young Adult
3.
Nutrients ; 10(6)2018 Jun 19.
Article in English | MEDLINE | ID: mdl-29921786

ABSTRACT

This study investigated the acute circulating gut hormone, appetite and gastric emptying rate responses to a semi-solid meal following exercise at different intensities. Twelve men completed three trials in a randomised-crossover design, consisting of continuous cycling at 70% V˙O2Peak (HIGH), 40% V˙O2Peak (LOW) or rest (CONTROL). Baseline samples were collected after an overnight fast before undertaking the 60 min exercise or rest period, followed by 30 min rest before consumption of a standardised semi-solid meal (~242 kcal). During the 2 h postprandial period, gastric emptying rate of the meal was examined using the 13C-breath test method, appetite was measured using visual analogue scales, and serum concentrations of acylated ghrelin, pancreatic polypeptide, peptide YY, glucagon-like peptide-1, insulin, glucose, triglycerides, total cholesterol and non-esterified fatty acids were assessed. Subjective appetite response was not different between trials (p > 0.05). Half emptying time of the meal was 89 ± 13, 82 ± 8 and 94 ± 31 min on CONTROL, LOW and HIGH, respectively (p = 0.247). In healthy un-trained adult males, responses to exercise at intensities of 70% and 40% V˙O2Peak did not differ to a non-exercise control for measurements of subsequent gastric emptying, circulating gut hormone response or appetite. These results suggest that exercise intensity has little effect on post-exercise appetite response to a semi-solid meal.


Subject(s)
Appetite/physiology , Exercise/physiology , Gastric Emptying/physiology , Gastrointestinal Hormones/metabolism , Meals , Adult , Cross-Over Studies , Eating/physiology , Gastrointestinal Hormones/blood , Humans , Male , Postprandial Period , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...