Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Vet Sci ; 8: 554383, 2021.
Article in English | MEDLINE | ID: mdl-34026880

ABSTRACT

Molecular knowledge of virus-antibody interactions is essential for the development of better vaccines and for a timely assessment of the spread and severity of epidemics. For foot-and-mouth disease virus (FMDV) research, in particular, computational methods for antigen-antibody (Ag-Ab) interaction, and cross-antigenicity characterization and prediction are critical to design engineered vaccines with robust, long-lasting, and wider response against different strains. We integrated existing structural modeling and prediction algorithms to study the surface properties of FMDV Ags and Abs and their interaction. First, we explored four modeling and two Ag-Ab docking methods and implemented a computational pipeline based on a reference Ag-Ab structure for FMDV of serotype C, to be used as a source protocol for the study of unknown interaction pairs of Ag-Ab. Next, we obtained the variable region sequence of two monoclonal IgM and IgG antibodies that recognize and neutralize antigenic site A (AgSA) epitopes from South America serotype A FMDV and developed two peptide ELISAs for their fine epitope mapping. Then, we applied the previous Ag-Ab molecular structure modeling and docking protocol further scored by functional peptide ELISA data. This work highlights a possible different behavior in the immune response of IgG and IgM Ab isotypes. The present method yielded reliable Ab models with differential paratopes and Ag interaction topologies in concordance with their isotype classes. Moreover, it demonstrates the applicability of computational prediction techniques to the interaction phenomena between the FMDV immunodominant AgSA and Abs, and points out their potential utility as a metric for virus-related, massive Ab repertoire analysis or as a starting point for recombinant vaccine design.

2.
Arch Virol ; 163(7): 1769-1778, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29536193

ABSTRACT

A foot-and-mouth disease virus (FMDV) DNA-launched reporter replicon containing a luciferase gene was used to assess the impact of non-structural (NS) protein 3A on viral replication. Independent deletions within the N-terminal region (amino acid [aa] residues 6 to 24) and the central hydrophobic region (HR, aa 59 to 76) of FMDV NS protein 3A were engineered, and luciferase activity in lysates of control and mutated replicon-transfected cells was measured. Triple alanine replacements of the N-terminal triplet Arg 18- His 19 -Glu 20 and a single alanine substitution of the highly charged Glu 20 residue both resulted in a 70-80% reduction in luciferase activity when compared with wild-type controls. Alanine substitution of the 17 aa present in the central HR, on the other hand, resulted in complete inhibition of luciferase activity and in the accumulation of the mutated 3A within the cell nucleus according to immunofluorescence analysis. Our results suggest that both the aa sequence around the putatively exposed hydrophilic E20 residue at the N-terminus of the protein and the hydrophobic tract located between aa 59 and 76 are of major relevance for maintaining the functionality of the 3A protein and preventing its mislocalization into the cell nucleus.


Subject(s)
Foot-and-Mouth Disease Virus/genetics , Replicon , Viral Nonstructural Proteins/chemistry , Virus Replication/genetics , Amino Acid Sequence , Amino Acids/chemistry , Amino Acids/metabolism , Animals , Cell Line , Cell Nucleus/virology , Cricetinae , DNA Replication , Foot-and-Mouth Disease/virology , Foot-and-Mouth Disease Virus/chemistry , Foot-and-Mouth Disease Virus/physiology , Gene Expression , Hydrophobic and Hydrophilic Interactions , Luciferases , Mutation , Protein Domains , Sequence Deletion , Viral Nonstructural Proteins/genetics
3.
Arch Virol ; 162(8): 2279-2286, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28421368

ABSTRACT

Recombinant protein 3A-EGFP, a fusion construct between foot-and-mouth disease virus (FMDV) non-structural protein 3A and the enhanced green fluorescent protein (EGFP) was expressed in BL21-DE3 cells. The identity of the partially purified protein 3A-EGFP was confirmed by its reactivity with sera from cattle infected with FMDV and with a monoclonal antibody specific for FMDV-3ABC (MAb3H7) in Western blot assays. No reactivity was observed with sera from uninfected vaccinated animals. The performance of 3A-EGFP as an antigen in an indirect enzyme-linked immunosorbent assay (ELISA) was assessed and compared with that of a previously developed and validated capture ELISA that uses a 3ABC recombinant antigen (3ABC ELISA) and has been widely applied for serological surveys in Argentina. Parallel analysis of strongly and weakly positive reference sera from infected animals and 329 serum samples from uninfected vaccinated cattle showed that the 3A-EGFP antigen unequivocally identifies sera from FMDV-infected cattle with similar performance to its 3ABC counterpart. The 3A-EGFP ELISA is simpler and faster to perform than the 3ABC ELISA, since it does not require a capture step with a specific antibody. Moreover, the expression and storage of the recombinant 3A-EGFP is simplified by the absence of residual autoproteolytic activity associated to the 3C sequence. We conclude that the 3A-EGFP ELISA constitutes a promising screening method in serosurveys to determine whether or not animals are infected with FMDV.


Subject(s)
Cattle Diseases/diagnosis , Foot-and-Mouth Disease Virus/isolation & purification , Foot-and-Mouth Disease/diagnosis , Viral Nonstructural Proteins/immunology , Animals , Antibodies, Monoclonal/blood , Antibodies, Viral/blood , Argentina , Cattle , Cattle Diseases/virology , Green Fluorescent Proteins/immunology , Recombinant Fusion Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...