Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Genet Genomic Med ; 7(4): e00567, 2019 04.
Article in English | MEDLINE | ID: mdl-30722102

ABSTRACT

BACKGROUND: Follistatin-like 1 (Fstl1) is a glycoprotein expressed throughout embryonic development. Homozygous loss of Fstl1 in mice results in skeletal and respiratory defects, leading to neonatal death due to a collapse of the trachea. Furthermore, Fstl1 conditional deletion from the endocardial/endothelial lineage results in postnatal death due to heart failure and profound atrioventricular valve defects. Here, we investigated patients with phenotypes similar to the phenotypes observed in the transgenic mice, for variants in FSTL1. METHODS: In total, 69 genetically unresolved patients were selected with the following phenotypes: campomelic dysplasia (12), small patella syndrome (2), BILU (1), and congenital heart disease patients (54), of which 16 also had kyphoscoliosis, and 38 had valve abnormalities as their main diagnosis. Using qPCR, none of 69 patients showed copy number variations in FSTL1. The entire gene body, including microRNA-198 and three validated microRNA-binding sites, were analyzed using Sanger sequencing. RESULTS: No variants were found in the coding region. However, 8 intronic variants were identified that differed significantly in their minor allele frequency compared to controls. Variant rs2272515 was found to significantly correlate (p < 0.05) with kyphoscoliosis. CONCLUSION: We conclude that pathogenic variants in FSTL1 are unlikely to be responsible for skeletal or atrioventricular valve anomalies in humans.


Subject(s)
Bone Diseases, Developmental/genetics , Campomelic Dysplasia/genetics , DNA Copy Number Variations , Follistatin-Related Proteins/genetics , Heart Valve Diseases/genetics , Hip/abnormalities , Ischium/abnormalities , Kyphosis/genetics , Patella/abnormalities , Polymorphism, Single Nucleotide , Bone Diseases, Developmental/pathology , Campomelic Dysplasia/pathology , Heart Defects, Congenital/genetics , Heart Defects, Congenital/pathology , Heart Valve Diseases/pathology , Hip/pathology , Humans , Ischium/pathology , Kyphosis/pathology , Patella/pathology
2.
Proc Natl Acad Sci U S A ; 115(52): E12245-E12254, 2018 12 26.
Article in English | MEDLINE | ID: mdl-30530645

ABSTRACT

The significance of cardiac stem cell (CSC) populations for cardiac regeneration remains disputed. Here, we apply the most direct definition of stem cell function (the ability to replace lost tissue through cell division) to interrogate the existence of CSCs. By single-cell mRNA sequencing and genetic lineage tracing using two Ki67 knockin mouse models, we map all proliferating cells and their progeny in homoeostatic and regenerating murine hearts. Cycling cardiomyocytes were only robustly observed in the early postnatal growth phase, while cycling cells in homoeostatic and damaged adult myocardium represented various noncardiomyocyte cell types. Proliferative postdamage fibroblasts expressing follistatin-like protein 1 (FSTL1) closely resemble neonatal cardiac fibroblasts and form the fibrotic scar. Genetic deletion of Fstl1 in cardiac fibroblasts results in postdamage cardiac rupture. We find no evidence for the existence of a quiescent CSC population, for transdifferentiation of other cell types toward cardiomyocytes, or for proliferation of significant numbers of cardiomyocytes in response to cardiac injury.


Subject(s)
Cell Proliferation , Heart Injuries/physiopathology , Animals , Cells, Cultured , Disease Models, Animal , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Follistatin-Related Proteins/genetics , Follistatin-Related Proteins/metabolism , Heart Injuries/genetics , Heart Injuries/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardium/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Pregnancy , Stem Cells/cytology , Stem Cells/metabolism
3.
Cell Mol Life Sci ; 75(13): 2339-2354, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29594389

ABSTRACT

Follistatin-like 1 (FSTL1) is a secreted glycoprotein displaying expression changes during development and disease, among which cardiovascular disease, cancer, and arthritis. The cardioprotective role of FSTL1 has been intensively studied over the last years, though its mechanism of action remains elusive. FSTL1 is involved in multiple signaling pathways and biological processes, including vascularization and regulation of the immune response, a feature that complicates its study. Binding to the DIP2A, TLR4 and BMP receptors have been shown, but other molecular partners probably exist. During cancer progression and rheumatoid arthritis, controversial data have been reported with respect to the proliferative, apoptotic, migratory, and inflammatory effects of FSTL1. This controversy might reside in the extensive post-transcriptional regulation of FSTL1. The FSTL1 primary transcript also encodes for a microRNA (miR-198) in primates and multiple microRNA-binding sites are present in the 3'UTR. The switch between expression of the FSTL1 protein and miR-198 is an important regulator of tumour metastasis and wound healing. The glycosylation state of FSTL1 is a determinant of biological activity, in cardiomyocytes the glycosylated form promoting proliferation and the non-glycosylated working anti-apoptotic. Moreover, the glycosylation state shows differences between species and tissues which might underlie the differences observed in in vitro studies. Finally, regulation at the level of protein secretion has been described.


Subject(s)
Follistatin-Related Proteins/metabolism , Animals , Apoptosis/physiology , Arthritis, Rheumatoid/metabolism , Humans , MicroRNAs/metabolism , Neoplasms/metabolism , Signal Transduction/physiology , Wound Healing/physiology
4.
Pulm Circ ; 7(1): 219-231, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28680581

ABSTRACT

Bone morphogenetic protein (BMP) signaling regulates vascular smooth muscle maturation, endothelial cell proliferation, and tube formation. The endogenous BMP antagonist Follistatin-like 1 (Fstl1) is highly expressed in pulmonary vascular endothelium of the developing mouse lung, suggesting a role in pulmonary vascular formation and vascular homeostasis. The aim of this study was to investigate the role of Fstl1 in the pulmonary vascular endothelium. To this aim, Fstl1 was conditionally deleted from endothelial and endothelial-derived cells using Tie2-cre driven Fstl1-KO mice (Fstl1-eKO mice). Endothelial-specific Fstl1 deletion was postnatally lethal, as ∼70% of Fstl1-eKO mice died at three weeks after birth. Deletion of Fstl1 from endothelium resulted in a reduction of right ventricular output at three weeks after birth compared with controls. This was associated with pulmonary vascular remodeling, as the percentage of actin-positive small pulmonary vessels was increased at three weeks in Fstl1-eKO mice compared with controls. Endothelial deletion of Fstl1 resulted in activation of Smad1/5/8 signaling and increased BMP/Smad-regulated gene expression of Jagged1, Endoglin, and Gata2 at one week after birth compared with controls. In addition, potent vasoconstrictor Endothelin-1, the expression of which is driven by Gata2, was increased in expression, both on the mRNA and protein levels, at one week after birth compared with controls. At three weeks, Jagged1 was reduced in the Fstl1-eKO mice whereas Endoglin and Endothelin-1 were unchanged. In conclusion, loss of endothelial Fstl1 in the lung is associated with elevated BMP-regulated genes, impaired small pulmonary vascular remodeling, and decreased right ventricular output.

5.
Sci Rep ; 7(1): 24, 2017 02 02.
Article in English | MEDLINE | ID: mdl-28154421

ABSTRACT

To be accurate, quantitative Polymerase Chain Reaction (qPCR) studies require a set of stable reference genes for normalization. This is especially critical in cardiac research because of the diversity of the clinical and experimental conditions in the field. We analyzed the stability of previously described as potential reference genes in different subsets of cardiac tissues, each representing a different field in cardiac research. The qPCR dataset was based on 119 different tissue samples derived from cardiac development to pathology in mouse adult hearts. These samples were grouped into 47 tissue types. The stability of 9 candidate genes was analyzed in each of 12 experimental conditions comprising different groupings of these tissue types. Expression stability was determined with the geNorm module of qbase+. This analysis showed that different sets of two or three reference genes are required for analysis of qPCR data in different experimental conditions in murine cardiac research.


Subject(s)
Gene Expression Profiling/methods , Gene Expression Profiling/standards , Heart/physiology , Myocardium/metabolism , Animals , Datasets as Topic , In Situ Hybridization , Mice , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/standards , Reference Standards
6.
PLoS One ; 8(2): e55890, 2013.
Article in English | MEDLINE | ID: mdl-23418471

ABSTRACT

Gut mesodermal tissues originate from the splanchnopleural mesenchyme. However, the embryonic gastrointestinal coelomic epithelium gives rise to mesenchymal cells, whose significance and fate are little known. Our aim was to investigate the contribution of coelomic epithelium-derived cells to the intestinal development. We have used the transgenic mouse model mWt1/IRES/GFP-Cre (Wt1(cre)) crossed with the Rosa26R-EYFP reporter mouse. In the gastrointestinal duct Wt1, the Wilms' tumor suppressor gene, is specific and dynamically expressed in the coelomic epithelium. In the embryos obtained from the crossbreeding, the Wt1-expressing cell lineage produces the yellow fluorescent protein (YFP) allowing for colocalization with differentiation markers through confocal microscopy and flow cytometry. Wt1(cre-YFP) cells were very abundant throughout the intestine during midgestation, declining in neonates. Wt1(cre-YFP) cells were also transiently observed within the mucosa, being apparently released into the intestinal lumen. YFP was detected in cells contributing to intestinal vascularization (endothelium, pericytes and smooth muscle), visceral musculature (circular, longitudinal and submucosal) as well as in Cajal and Cajal-like interstitial cells. Wt1(cre-YFP) mesenchymal cells expressed FGF9, a critical growth factor for intestinal development, as well as PDGFRα, mainly within developing villi. Thus, a cell population derived from the coelomic epithelium incorporates to the gut mesenchyme and contribute to a variety of intestinal tissues, probably playing also a signaling role. Our results support the origin of interstitial cells of Cajal and visceral circular muscle from a common progenitor expressing anoctamin-1 and SMCα-actin. Coelomic-derived cells contribute to the differentiation of at least a part of the interstitial cells of Cajal.


Subject(s)
Cell Differentiation , Cell Lineage , Intestines/cytology , Mesoderm/cytology , Animals , Anoctamin-1 , Chloride Channels/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Fibroblast Growth Factor 9/metabolism , Intestinal Mucosa/metabolism , Intestines/embryology , Mesoderm/embryology , Mesoderm/metabolism , Mice , Mice, Transgenic , Muscle, Smooth/cytology , Muscle, Smooth/embryology , Muscle, Smooth/metabolism , Receptor, Platelet-Derived Growth Factor alpha/metabolism
7.
PLoS One ; 6(9): e24175, 2011.
Article in English | MEDLINE | ID: mdl-21949696

ABSTRACT

During embryonic vasculogenesis, endothelial precursor cells of mesodermal origin known as angioblasts assemble into a characteristic network pattern. Although a considerable amount of markers and signals involved in this process have been identified, the mechanisms underlying the coalescence of angioblasts into this reticular pattern remain unclear. Various recent studies hypothesize that autocrine regulation of the chemoattractant vascular endothelial growth factor (VEGF) is responsible for the formation of vascular networks in vitro. However, the autocrine regulation hypothesis does not fit well with reported data on in vivo early vascular development. In this study, we propose a mathematical model based on the alternative assumption that endodermal VEGF signalling activity, having a paracrine effect on adjacent angioblasts, is mediated by its binding to the extracellular matrix (ECM). Detailed morphometric analysis of simulated networks and images obtained from in vivo quail embryos reveals the model mimics the vascular patterns with high accuracy. These results show that paracrine signalling can result in the formation of fine-grained cellular networks when mediated by angioblast-produced ECM. This lends additional support to the theory that patterning during early vascular development in the vertebrate embryo is regulated by paracrine signalling.


Subject(s)
Extracellular Matrix/metabolism , Mesoderm/blood supply , Neovascularization, Physiologic/physiology , Paracrine Communication/physiology , Algorithms , Animals , Computer Simulation , Endothelium, Vascular/embryology , Endothelium, Vascular/metabolism , Mesoderm/embryology , Mesoderm/metabolism , Models, Biological , Protein Binding , Quail , Signal Transduction/physiology , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...