Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Genet Sel Evol ; 56(1): 19, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491422

ABSTRACT

BACKGROUND: Growth rate is an important component of feed conversion efficiency in cattle and varies across the different stages of the finishing period. The metabolic effect of the rumen microbiome is essential for cattle growth, and investigating the genomic and microbial factors that underlie this temporal variation can help maximize feed conversion efficiency at each growth stage. RESULTS: By analysing longitudinal body weights during the finishing period and genomic and metagenomic data from 359 beef cattle, our study demonstrates that the influence of the host genome on the functional rumen microbiome contributes to the temporal variation in average daily gain (ADG) in different months (ADG1, ADG2, ADG3, ADG4). Five hundred and thirty-three additive log-ratio transformed microbial genes (alr-MG) had non-zero genomic correlations (rg) with at least one ADG-trait (ranging from |0.21| to |0.42|). Only a few alr-MG correlated with more than one ADG-trait, which suggests that a differential host-microbiome determinism underlies ADG at different stages. These alr-MG were involved in ribosomal biosynthesis, energy processes, sulphur and aminoacid metabolism and transport, or lipopolysaccharide signalling, among others. We selected two alternative subsets of 32 alr-MG that had a non-uniform or a uniform rg sign with all the ADG-traits, regardless of the rg magnitude, and used them to develop a microbiome-driven breeding strategy based on alr-MG only, or combined with ADG-traits, which was aimed at shaping the rumen microbiome towards increased ADG at all finishing stages. Combining alr-MG information with ADG records increased prediction accuracy of genomic estimated breeding values (GEBV) by 11 to 22% relative to the direct breeding strategy (using ADG-traits only), whereas using microbiome information, only, achieved lower accuracies (from 7 to 41%). Predicted selection responses varied consistently with accuracies. Restricting alr-MG based on their rg sign (uniform subset) did not yield a gain in the predicted response compared to the non-uniform subset, which is explained by the absence of alr-MG showing non-zero rg at least with more than one of the ADG-traits. CONCLUSIONS: Our work sheds light on the role of the microbial metabolism in the growth trajectory of beef cattle at the genomic level and provides insights into the potential benefits of using microbiome information in future genomic breeding programs to accurately estimate GEBV and increase ADG at each finishing stage in beef cattle.


Subject(s)
Genomics , Microbiota , Cattle/genetics , Animals , Phenotype , Body Weight , Metagenome , Animal Feed
2.
Emerg Infect Dis ; 30(4): 701-710, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38526070

ABSTRACT

Salmonella enterica serovar Infantis presents an ever-increasing threat to public health because of its spread throughout many countries and association with high levels of antimicrobial resistance (AMR). We analyzed whole-genome sequences of 5,284 Salmonella Infantis strains from 74 countries, isolated during 1989-2020 from a wide variety of human, animal, and food sources, to compare genetic phylogeny, AMR determinants, and plasmid presence. The global Salmonella Infantis population structure diverged into 3 clusters: a North American cluster, a European cluster, and a global cluster. The levels of AMR varied by Salmonella Infantis cluster and by isolation source; 73% of poultry isolates were multidrug resistant, compared with 35% of human isolates. This finding correlated with the presence of the pESI megaplasmid; 71% of poultry isolates contained pESI, compared with 32% of human isolates. This study provides key information for public health teams engaged in reducing the spread of this pathogen.


Subject(s)
One Health , Salmonella enterica , Animals , Humans , Serogroup , Anti-Bacterial Agents/pharmacology , Salmonella/genetics , Poultry , Drug Resistance, Multiple, Bacterial/genetics
3.
Bioinformatics ; 39(8)2023 08 01.
Article in English | MEDLINE | ID: mdl-37535671

ABSTRACT

SUMMARY: Accurate gene prediction is essential for successful metagenome analysis. We present KOunt, a Snakemake pipeline, that precisely quantifies KEGG orthologue abundance. AVAILABILITY AND IMPLEMENTATION: KOunt is available on GitHub: https://github.com/WatsonLab/KOunt. The KOunt reference database is available on figshare: https://doi.org/10.6084/m9.figshare.21269715. Test data are available at https://doi.org/10.6084/m9.figshare.22250152 and version 1.2.0 of KOunt at https://doi.org/10.6084/m9.figshare.23607834.


Subject(s)
Metagenome , Software , Workflow , Databases, Factual
4.
Am J Rhinol Allergy ; 37(6): 705-729, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37491901

ABSTRACT

BACKGROUND: Chronic rhinosinusitis (CRS) is a heterogeneous condition characterized by differing inflammatory endotypes. The identification of suitable biomarkers could enable personalized approaches to treatment selection. OBJECTIVE: This study aimed to identify and summarize clinical studies of biomarkers in adults with CRS in order to inform future research into CRS endotypes. METHODS: We conducted systematic searches of MEDLINE and Web of Science from inception to January 30, 2022 and included all clinical studies of adult CRS patients and healthy controls measuring biomarkers using enzyme-linked immunosorbent assays or Luminex immunoassays. Outcomes included the name and tissue type of identified biomarkers and expression patterns within CRS phenotypes. Study quality was assessed using the National Institutes of Health quality assessment tool for observational cohort and cross-sectional studies. A narrative synthesis was performed. RESULTS: We identified 78 relevant studies involving up to 9394 patients, predominantly with CRS with nasal polyposis. Studies identified 80 biomarkers from nasal tissue, 25 from nasal secretions, 14 from nasal lavage fluid, 24 from serum, and one from urine. The majority of biomarkers found to distinguish CRS phenotypes were identified in nasal tissue, especially in nasal polyps. Serum biomarkers were more commonly found to differentiate CRS from controls. The most frequently measured biomarker was IL-5, followed by IL-13 and IL-4. Serum IgE, IL-17, pentraxin-3 and nasal phospho-janus kinase 2, IL-5, IL-6, IL-17A, granulocyte-colony stimulating factor, and interferon gamma were identified as correlated with disease severity. CONCLUSION: We have identified numerous potential biomarkers to differentiate a range of CRS phenotypes. Future studies should focus on the prognostic role of nasal tissue biomarkers or expand on the more limited studies of nasal secretions and nasal lavage fluid.We registered this study in PROSPERO (CRD42022302787).


Subject(s)
Nasal Polyps , Rhinitis , Sinusitis , Humans , Adult , Rhinitis/diagnosis , Rhinitis/metabolism , Interleukin-5/metabolism , Cross-Sectional Studies , Sinusitis/diagnosis , Sinusitis/metabolism , Biomarkers , Chronic Disease
5.
Nat Methods ; 20(8): 1170-1173, 2023 08.
Article in English | MEDLINE | ID: mdl-37386187

ABSTRACT

Metagenomic binning has revolutionized the study of uncultured microorganisms. Here we compare single- and multi-coverage binning on the same set of samples, and demonstrate that multi-coverage binning produces better results than single-coverage binning and identifies contaminant contigs and chimeric bins that other approaches miss. While resource expensive, multi-coverage binning is a superior approach and should always be performed over single-coverage binning.


Subject(s)
Metagenome , Metagenomics , Sequence Analysis, DNA/methods , Metagenomics/methods , Algorithms
6.
Microbiome ; 10(1): 166, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36199148

ABSTRACT

BACKGROUND: Healthier ruminant products can be achieved by adequate manipulation of the rumen microbiota to increase the flux of beneficial fatty acids reaching host tissues. Genomic selection to modify the microbiome function provides a permanent and accumulative solution, which may have also favourable consequences in other traits of interest (e.g. methane emissions). Possibly due to a lack of data, this strategy has never been explored. RESULTS: This study provides a comprehensive identification of ruminal microbial mechanisms under host genomic influence that directly or indirectly affect the content of unsaturated fatty acids in beef associated with human dietary health benefits C18:3n-3, C20:5n-3, C22:5n-3, C22:6n-3 or cis-9, trans-11 C18:2 and trans-11 C18:1 in relation to hypercholesterolemic saturated fatty acids C12:0, C14:0 and C16:0, referred to as N3 and CLA indices. We first identified that ~27.6% (1002/3633) of the functional core additive log-ratio transformed microbial gene abundances (alr-MG) in the rumen were at least moderately host-genomically influenced (HGFC). Of these, 372 alr-MG were host-genomically correlated with the N3 index (n=290), CLA index (n=66) or with both (n=16), indicating that the HGFC influence on beef fatty acid composition is much more complex than the direct regulation of microbial lipolysis and biohydrogenation of dietary lipids and that N3 index variation is more strongly subjected to variations in the HGFC than CLA. Of these 372 alr-MG, 110 were correlated with the N3 and/or CLA index in the same direction, suggesting the opportunity for enhancement of both indices simultaneously through a microbiome-driven breeding strategy. These microbial genes were involved in microbial protein synthesis (aroF and serA), carbohydrate metabolism and transport (galT, msmX), lipopolysaccharide biosynthesis (kdsA, lpxD, lpxB), or flagellar synthesis (flgB, fliN) in certain genera within the Proteobacteria phyla (e.g. Serratia, Aeromonas). A microbiome-driven breeding strategy based on these microbial mechanisms as sole information criteria resulted in a positive selection response for both indices (1.36±0.24 and 0.79±0.21 sd of N3 and CLA indices, at 2.06 selection intensity). When evaluating the impact of our microbiome-driven breeding strategy to increase N3 and CLA indices on the environmental trait methane emissions (g/kg of dry matter intake), we obtained a correlated mitigation response of -0.41±0.12 sd. CONCLUSION: This research provides insight on the possibility of using the ruminal functional microbiome as information for host genomic selection, which could simultaneously improve several microbiome-driven traits of interest, in this study exemplified with meat quality traits and methane emissions. Video Abstract.


Subject(s)
Fatty Acids , Microbiota , Animal Feed/analysis , Animals , Breeding , Cattle , Diet , Fatty Acids/metabolism , Fatty Acids, Unsaturated/metabolism , Lipopolysaccharides , Methane/metabolism , Microbiota/genetics , Rumen/metabolism
8.
Access Microbiol ; 4(7): acmi000371, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36003217

ABSTRACT

Salmonella Infantis is presenting an increasing risk to public health. Of particular concern are the reports of pESI, a multidrug resistance (MDR) encoding megaplasmid, in isolates from multiple countries, but little is known about its presence or diversity in South Africa. Whole genome sequences of 387 S. Infantis isolates from South Africa (2004-2020) were analysed for genetic phylogeny, recombination frequency, antimicrobial resistance (AMR) determinants, plasmid presence and overall gene content. The population structure of South African S. Infantis was substantially different to S. Infantis reported elsewhere; only two thirds of isolates belonged to eBG31, while the remainder were identified as eBG297, a much rarer group globally. Significantly higher levels of recombination were observed in the eBG297 isolates, which was associated with the presence of prophages. The majority of isolates were putatively susceptible to antimicrobials (335/387) and lacked any plasmids (311/387); the megaplasmid pESI was present in just one isolate. A larger proportion of eBG31 isolates, 19% (49/263), contained at least one AMR determinant, compared to eBG297 at 2% (3/124). Comparison of the pan-genomes of isolates from either eBG identified 943 genes significantly associated with eBG, with 43 found exclusively in eBG31 isolates and 34 in eBG297 isolates. This, along with the single nucleotide polymorphism distance and difference in resistance profiles, suggests that eBG31 and eBG297 isolates occupy different niches within South Africa. If antibiotic-resistant S. Infantis emerges in South Africa, probably through the spread of the pESI plasmid, treatment of this infection would be compromised.

9.
Microb Genom ; 8(2)2022 02.
Article in English | MEDLINE | ID: mdl-35104206

ABSTRACT

Carbapenem-resistant Acinetobacter baumannii are prevalent in low- and middle-income countries such as Egypt, but little is known about the molecular epidemiology and mechanisms of resistance in these settings. Here, we characterize carbapenem-resistant A. baumannii from Alexandria, Egypt, and place it in a regional context. Fifty-four carbapenem-resistant isolates from Alexandria Main University Hospital (AMUH), Alexandria, Egypt, collected between 2010 and 2015 were genome sequenced using Illumina technology. Genomes were de novo assembled and annotated. Genomes for 36 isolates from the Middle East region were downloaded from GenBank. The core-gene compliment was determined using Roary, and analyses of recombination were performed in Gubbins. Multilocus sequence typing (MLST) sequence type (ST) and antibiotic-resistance genes were identified. The majority of Egyptian isolates belonged to one of three major clades, corresponding to Pasteur MLST clonal complex (CCPAS) 1, CCPAS2 and STPAS158. Strains belonging to STPAS158 have been reported almost exclusively from North Africa, the Middle East and Pakistan, and may represent a region-specific lineage. All isolates carried an oxa23 gene, six carried blaNDM-1 and one carried blaNDM-2. The oxa23 gene was located on a variety of different mobile elements, with Tn2006 predominant in CCPAS2 strains, and Tn2008 predominant in other lineages. Of particular concern, in 8 of the 13 CCPAS1 strains, the oxa23 gene was located in a temperate bacteriophage phiOXA, previously identified only once before in a CCPAS1 clone from the USA military. The carbapenem-resistant A. baumannii population in AMUH is very diverse, and indicates an endemic circulating population, including a region-specific lineage. A major mechanism for oxa23 dissemination in CCPAS1 isolates appears to be a bacteriophage, presenting new concerns about the ability of these carbapenemases to spread throughout the bacterial population.


Subject(s)
Acinetobacter baumannii/drug effects , Acinetobacter baumannii/genetics , Bacterial Proteins/genetics , Bacteriophages/genetics , Drug Resistance, Multiple, Bacterial/genetics , Acinetobacter Infections/epidemiology , Acinetobacter Infections/microbiology , Africa, Northern , Anti-Bacterial Agents/pharmacology , Carbapenems , Drug Resistance, Multiple, Bacterial/drug effects , Genome, Bacterial , Humans , Microbial Sensitivity Tests , Middle East , Molecular Epidemiology , Multilocus Sequence Typing , Whole Genome Sequencing , beta-Lactamases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...