Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Publication year range
2.
J Cell Mol Med ; 18(6): 1087-97, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24629015

ABSTRACT

Skeletal myopathy is a hallmark of heart failure (HF) and has been associated with a poor prognosis. HF and other chronic degenerative diseases share a common feature of a stressed system: sympathetic hyperactivity. Although beneficial acutely, chronic sympathetic hyperactivity is one of the main triggers of skeletal myopathy in HF. Considering that ß2 -adrenoceptors mediate the activity of sympathetic nervous system in skeletal muscle, we presently evaluated the contribution of ß2 -adrenoceptors for the morphofunctional alterations in skeletal muscle and also for exercise intolerance induced by HF. Male WT and ß2 -adrenoceptor knockout mice on a FVB genetic background (ß2 KO) were submitted to myocardial infarction (MI) or SHAM surgery. Ninety days after MI both WT and ß2 KO mice presented to cardiac dysfunction and remodelling accompanied by significantly increased norepinephrine and epinephrine plasma levels, exercise intolerance, changes towards more glycolytic fibres and vascular rarefaction in plantaris muscle. However, ß2 KO MI mice displayed more pronounced exercise intolerance and skeletal myopathy when compared to WT MI mice. Skeletal muscle atrophy of infarcted ß2 KO mice was paralleled by reduced levels of phosphorylated Akt at Ser 473 while increased levels of proteins related with the ubiquitin--proteasome system, and increased 26S proteasome activity. Taken together, our results suggest that lack of ß2 -adrenoceptors worsen and/or anticipate the skeletal myopathy observed in HF.


Subject(s)
Heart Failure/complications , Muscle, Skeletal/pathology , Muscular Atrophy/etiology , Myocardial Infarction/complications , Receptors, Adrenergic, beta-2/physiology , Animals , Echocardiography , Heart Failure/physiopathology , Male , Mice , Mice, Knockout , Muscle, Skeletal/metabolism , Muscular Atrophy/pathology , Myocardial Infarction/physiopathology , Physical Conditioning, Animal , Proteasome Endopeptidase Complex , Signal Transduction , Ubiquitin/metabolism
3.
PLoS One ; 8(5): e62452, 2013.
Article in English | MEDLINE | ID: mdl-23658728

ABSTRACT

The use of ß-blockers is mandatory for counteracting heart failure (HF)-induced chronic sympathetic hyperactivity, cardiac dysfunction and remodeling. Importantly, aerobic exercise training, an efficient nonpharmacological therapy to HF, also counteracts sympathetic hyperactivity in HF and improves exercise tolerance and cardiac contractility; the latter associated with changes in cardiac Ca(2+) handling. This study was undertaken to test whether combined ß-blocker and aerobic exercise training would integrate the beneficial effects of isolated therapies on cardiac structure, contractility and cardiomyocyte Ca(2+) handling in a genetic model of sympathetic hyperactivity-induced HF (α2A/α2C- adrenergic receptor knockout mice, KO). We used a cohort of 5-7 mo male wild-type (WT) and congenic mice (KO) with C57Bl6/J genetic background randomly assigned into 5 groups: control (WT), saline-treated KO (KOS), exercise trained KO (KOT), carvedilol-treated KO (KOC) and, combined carvedilol-treated and exercise-trained KO (KOCT). Isolated and combined therapies reduced mortality compared with KOS mice. Both KOT and KOCT groups had increased exercise tolerance, while groups receiving carvedilol had increased left ventricular fractional shortening and reduced cardiac collagen volume fraction compared with KOS group. Cellular data confirmed that cardiomyocytes from KOS mice displayed abnormal Ca(2+) handling. KOT group had increased intracellular peak of Ca(2+) transient and reduced diastolic Ca(2+) decay compared with KOS group, while KOC had increased Ca(2+) decay compared with KOS group. Notably, combined therapies re-established cardiomyocyte Ca(2+) transient paralleled by increased SERCA2 expression and SERCA2:PLN ratio toward WT levels. Aerobic exercise trained increased the phosphorylation of PLN at Ser(16) and Thr(17) residues in both KOT and KOCT groups, but carvedilol treatment reduced lipid peroxidation in KOC and KOCT groups compared with KOS group. The present findings provide evidence that the combination of carvedilol and aerobic exercise training therapies lead to a better integrative outcome than carvedilol or exercise training used in isolation.


Subject(s)
Adrenergic beta-Antagonists/pharmacology , Carbazoles/pharmacology , Exercise Therapy , Heart Failure/therapy , Myocardial Contraction , Propanolamines/pharmacology , Adrenergic beta-Antagonists/therapeutic use , Animals , Blood Pressure , Calcium Signaling , Carbazoles/therapeutic use , Carvedilol , Cells, Cultured , Combined Modality Therapy , Drug Evaluation, Preclinical , Exercise Tolerance , Heart Failure/metabolism , Heart Failure/physiopathology , Heart Rate , Lipid Peroxidation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Oxidative Stress , Physical Conditioning, Animal , Propanolamines/therapeutic use , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Ventricular Remodeling
4.
Life Sci ; 88(13-14): 578-85, 2011 Mar 28.
Article in English | MEDLINE | ID: mdl-21277865

ABSTRACT

AIMS: The clinical benefits of angiotensin II type 1 (AT1) receptor blockers (ARB) in heart failure (HF) include cardiac anti-remodeling and improved ventricular function. However, the cellular mechanisms underlying the benefits of ARB on ventricular function need to be better clarified. In the present manuscript, we evaluated the effects of AT1 receptor blockade on the net balance of Ca(2+) handling proteins in hearts of mice lacking α(2A) and α(2C) adrenoceptors (α(2A)/α(2C)ARKO), which develop sympathetic hyperactivity (SH) induced-HF. MAIN METHODS: A cohort of male wild-type (WT) and congenic α(2A)/α(2C)ARKO mice in a C57BL6/J genetic background (5-7mo of age) was randomly assigned to receive either placebo or ARB (Losartan, 10mg/kg for 8wks). Ventricular function (VF) was assessed by echocardiography, and cardiac myocyte width and ventricular fibrosis by a computer-assisted morphometric system. Sarcoplasmic reticulum Ca(2+) ATPase (SERCA2), phospholamban (PLN), phospho-Ser(16)-PLN, phospho-Thr(17)-PLN, phosphatase 1 (PP1), Na(+)-Ca(2+) exchanger (NCX), Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and phospho-Thr(286)-CaMKII were analyzed by Western blot. KEY FINDINGS: α(2A)/α(2C)ARKO mice displayed ventricular dysfunction, cardiomyocyte hypertrophy and cardiac fibrosis paralleled by decreased SERCA2 and increased phospho-Thr(17)-PLN, CaMKII, phospho-Thr(286)-CaMKII and NCX levels. ARB induced anti-cardiac remodeling effect and improved VF in α(2A)/α(2C)ARKO associated with increased SERCA2 and phospho-Ser(16)-PLN levels, and SERCA2:NCX ratio. Additionally, ARB decreased phospho-Thr(17)-PLN levels as well as reestablished NCX, CaMKII and phospho-Thr(286)-CaMKII toward WT levels. SIGNIFICANCE: Altogether, these data provide new insights on intracellular Ca(2+) regulatory mechanisms underlying improved ventricular function by ARB therapy in HF.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/therapeutic use , Calcium-Binding Proteins/metabolism , Heart Failure/drug therapy , Receptor, Angiotensin, Type 1/metabolism , Receptors, Adrenergic, alpha-2/physiology , Sympathetic Nervous System/physiology , Angiotensin II Type 1 Receptor Blockers/administration & dosage , Angiotensin II Type 1 Receptor Blockers/pharmacology , Animals , Blotting, Western , Calcium-Binding Proteins/genetics , Echocardiography , Exercise Test , Heart Failure/diagnostic imaging , Heart Failure/genetics , Heart Failure/metabolism , Heart Rate/drug effects , Male , Mice , Mice, Knockout , Receptors, Adrenergic, alpha-2/genetics , Sympathetic Nervous System/metabolism , Ventricular Remodeling/drug effects
5.
Rev. bras. med. esporte ; 15(4): 260-263, jul.-ago. 2009. ilus
Article in Portuguese | LILACS | ID: lil-526425

ABSTRACT

O aumento da atividade nervosa simpática e a taquicardia em repouso ou durante esforços físicos estão associados ao aumento da morbimortalidade, mesmo na ausência de sinais clínicos de doença cardíaca. Sabendo-se da importância dos receptores α2A/α2C-adrenérgicos na modulação da atividade nervosa e frequência cardíaca (FC), o presente trabalho utiliza um modelo genético de cardiomiopatia induzida por excesso de catecolaminas circulantes baseado na inativação gênica dos receptores α2A/α2C-adrenérgicos em camundongos (α2A/α2CKO) para verificar a resposta da FC ao exercício físico (EF), assim como o controle simpatovagal da FC ao EF. Testou-se a hipótese de que haveria resposta taquicárdica exacerbada durante o EF nos camundongos α2A/α2CKO mesmo quando a função cardíaca ainda estivesse preservada em repouso, sendo o receptor α2A-adrenérgico o principal responsável por essa resposta. Camundongos machos da linhagem C57Bl6J, controle (CO) e com inativação gênica para os receptores α2A (α2AKO), α2C α2CKO) e α2A/α2CKO foram submetidos a um teste de tolerância ao esforço físico. Outros dois grupos de camundongos, CO e α2A/α2CKO, foram submetidos ao bloqueio farmacológico dos receptores muscarínicos e β-adrenérgicos e ao EF progressivo para se avaliar a contribuição simpatovagal para a taquicardia de EF. Observou-se intolerância ao esforço físico (1.220 ± 18 e 1.460 ± 34 vs. 2.630 ± 42m, respectivamente) e maior taquicardia ao EF (765 ± 16 e 792 ± 13 vs. 603 ± 18bpm, respectivamente) nos camundongos α2AKO e α2A/α2CKO vs. CO. Além disso, o balanço autonômico estava alterado nos camundongos α2A/α2CKO pela hiperatividade simpática e menor efeito vagal cardíaco. Esses resultados demonstram a importância dos receptores α2A/α2C-adrenérgicos no controle autonômico não só no repouso, mas também durante o EF, sendo o receptor ...


Increase of sympathetic nervous activity and tachycardia at rest or during physical exertions are associated with increase of morbimortality, even in the absence of clinical signs of cardiac disease. Considering the importance of the α2A/α2C-adrenergic receptors in the modulation of the nervous activity and heart rate (HR), the present study uses a genetic model of cardiomyopathy induced by excess of circulating catecholamine in the gene inactivation of the α2A/α2 -adrenergic receptors in mice (α2A/α2CKO) to verify the HR response to physical exercise (PE), as well as the sympathetic-vagal control of the HR to PE. The hypothesis is that there would be exacerbated tachycardic response during PE in α2A/α2CKO mice even when the cardiac function was still preserved at rest, being the α2A-adrenergic receptor the main reason for this response. Male mice of the C57Bl6J lineage, control (CO) and with gene inactivation for the a2A (α2AKO), α2C α2CKO) and α2A/α2CKO receptors were submitted to tolerance to a physical exercise test. Two other groups of mice, CO and α2A/α2CKO, were submitted to pharmacological blocking of the muscarinic and β-adrenergic receptors as well as to progressive PE to assess the sympathetic-vagal contribution to PE tachycardia. Intolerance to physical exercise (1.220 ± 18 and 1.460 ± 34 vs. 2.630 ± 42m, respectively) and higher tachycardia to PE (765 ± 16 e 792 ± 13 vs. 603 ± 18 bpm, respectively) in the α2AKO and α2A/α2CKO vs. CO mice was observed. Moreover, the autonomic balance was altered in the α2A/α2CKO mice by the sympathetic hyperactivity and lower cardiac vagal effect. These outcomes demonstrated the importance of the α2A/α2C-adrenergic receptors in autonomic control not only at rest, but also during PE, being theα2A-adrenergic receptor responsible for the sympathetic hyperactivity and lower ...


Subject(s)
Animals , Male , Cardiomyopathies/chemically induced , Catecholamines/adverse effects , Disease Models, Animal , Exercise , Heart Rate , Heart Rate/genetics , Physical Conditioning, Animal , Rest , /genetics
6.
J Mol Cell Cardiol ; 45(2): 240-9, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18632114

ABSTRACT

beta-blockers, as class, improve cardiac function and survival in heart failure (HF). However, the molecular mechanisms underlying these beneficial effects remain elusive. In the present study, metoprolol and carvedilol were used in doses that display comparable heart rate reduction to assess their beneficial effects in a genetic model of sympathetic hyperactivity-induced HF (alpha(2A)/alpha(2C)-ARKO mice). Five month-old HF mice were randomly assigned to receive either saline, metoprolol or carvedilol for 8 weeks and age-matched wild-type mice (WT) were used as controls. HF mice displayed baseline tachycardia, systolic dysfunction evaluated by echocardiography, 50% mortality rate, increased cardiac myocyte width (50%) and ventricular fibrosis (3-fold) compared with WT. All these responses were significantly improved by both treatments. Cardiomyocytes from HF mice showed reduced peak [Ca(2+)](i) transient (13%) using confocal microscopy imaging. Interestingly, while metoprolol improved [Ca(2+)](i) transient, carvedilol had no effect on peak [Ca(2+)](i) transient but also increased [Ca(2+)] transient decay dynamics. We then examined the influence of carvedilol in cardiac oxidative stress as an alternative target to explain its beneficial effects. Indeed, HF mice showed 10-fold decrease in cardiac reduced/oxidized glutathione ratio compared with WT, which was significantly improved only by carvedilol treatment. Taken together, we provide direct evidence that the beneficial effects of metoprolol were mainly associated with improved cardiac Ca(2+) transients and the net balance of cardiac Ca(2+) handling proteins while carvedilol preferentially improved cardiac redox state.


Subject(s)
Adrenergic beta-Antagonists/pharmacology , Heart Failure/drug therapy , Heart Failure/physiopathology , Intracellular Fluid/physiology , Receptors, Adrenergic, beta/metabolism , Animals , Carbazoles/therapeutic use , Carvedilol , Disease Models, Animal , Heart Failure/genetics , Heart Failure/mortality , Heart Function Tests , Hemodynamics/drug effects , Hemodynamics/genetics , Intracellular Fluid/drug effects , Intracellular Fluid/metabolism , Male , Metoprolol/therapeutic use , Mice , Mice, Congenic , Mice, Inbred C57BL , Mice, Knockout , Myocardial Contraction/drug effects , Myocardial Contraction/genetics , Propanolamines/therapeutic use , Random Allocation
7.
J Appl Physiol (1985) ; 104(1): 103-9, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17975126

ABSTRACT

Exercise training (ET) is a coadjuvant therapy in preventive cardiology. It delays cardiac dysfunction and exercise intolerance in heart failure (HF); however, the molecular mechanisms underlying its cardioprotection are poorly understood. We tested the hypothesis that ET would prevent Ca(2+) handling abnormalities and ventricular dysfunction in sympathetic hyperactivity-induced HF mice. A cohort of male wild-type (WT) and congenic alpha(2A)/alpha(2C)-adrenoceptor knockout (alpha(2A)/alpha(2C)ARKO) mice with C57BL6/J genetic background (3-5 mo of age) were randomly assigned into untrained and exercise-trained groups. ET consisted of 8-wk swimming session, 60 min, 5 days/wk. Fractional shortening (FS) was assessed by two-dimensional guided M-mode echocardiography. The protein expression of ryanodine receptor (RyR), phospho-Ser(2809)-RyR, sarcoplasmic reticulum Ca(2+) ATPase (SERCA2), Na(+)/Ca(2+) exchanger (NCX), phospholamban (PLN), phospho-Ser(16)-PLN, and phospho-Thr(17)-PLN were analyzed by Western blotting. At 3 mo of age, no significant difference in FS and exercise tolerance was observed between WT and alpha(2A)/alpha(2C)ARKO mice. At 5 mo, when cardiac dysfunction is associated with lung edema and increased plasma norepinephrine levels, alpha(2A)/alpha(2C)ARKO mice presented reduced FS paralleled by decreased SERCA2 (26%) and NCX (34%). Conversely, alpha(2A)/alpha(2C)ARKO mice displayed increased phospho-Ser(16)-PLN (76%) and phospho-Ser(2809)-RyR (49%). ET in alpha(2A)/alpha(2C)ARKO mice prevented exercise intolerance, ventricular dysfunction, and decreased plasma norepinephrine. ET significantly increased the expression of SERCA2 (58%) and phospho-Ser(16)-PLN (30%) while it restored the expression of phospho-Ser(2809)-RyR to WT levels. Collectively, we provide evidence that improved net balance of Ca(2+) handling proteins paralleled by a decreased sympathetic activity on ET are, at least in part, compensatory mechanisms against deteriorating ventricular function in HF.


Subject(s)
Calcium/metabolism , Exercise Therapy , Heart Failure/therapy , Myocardium/metabolism , Receptors, Adrenergic, alpha-2/metabolism , Sympathetic Nervous System/physiopathology , Ventricular Dysfunction/prevention & control , Animals , Calcium-Binding Proteins/metabolism , Disease Models, Animal , Echocardiography , Exercise Tolerance , Heart Failure/complications , Heart Failure/metabolism , Heart Failure/pathology , Heart Failure/physiopathology , Male , Mice , Mice, Congenic , Mice, Inbred C57BL , Mice, Knockout , Myocardial Contraction , Myocardium/enzymology , Myocardium/pathology , Norepinephrine/blood , Physical Exertion , Receptors, Adrenergic, alpha-2/deficiency , Receptors, Adrenergic, alpha-2/genetics , Research Design , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sodium-Calcium Exchanger/metabolism , Sympathetic Nervous System/metabolism , Time Factors , Ventricular Dysfunction/etiology , Ventricular Dysfunction/metabolism , Ventricular Dysfunction/pathology , Ventricular Dysfunction/physiopathology
8.
Physiol Genomics ; 29(3): 246-52, 2007 May 11.
Article in English | MEDLINE | ID: mdl-17244791

ABSTRACT

The molecular basis of the beneficial effects associated with exercise training (ET) on overall ventricular function (VF) in heart failure (HF) remains unclear. We investigated potential Ca(2+) handling abnormalities and whether ET would improve VF of mice lacking alpha(2A)- and alpha(2C)-adrenoceptors (alpha(2A)/alpha(2C)ARKO) that have sympathetic hyperactivity-induced HF. A cohort of male wild-type (WT) and congenic alpha(2A)/alpha(2C)ARKO mice in a C57BL/J genetic background (5-7 mo of age) was randomly assigned into untrained and trained groups. VF was assessed by two-dimensional guided M-mode echocardiography. Cardiac myocyte width and ventricular fibrosis were evaluated with a computer-assisted morphometric system. Sarcoplasmic reticulum Ca(2+) ATPase (SERCA2), phospholamban (PLN), phospho-Ser(16)-PLN, phospho-Thr(17)-PLN, phosphatase 1 (PP1), and Na(+)-Ca(2+) exchanger (NCX) were analyzed by Western blotting. ET consisted of 8-wk running sessions of 60 min, 5 days/wk. alpha(2A)/alpha(2C)ARKO mice displayed exercise intolerance, systolic dysfunction, increased cardiac myocyte width, and ventricular fibrosis paralleled by decreased SERCA2 and increased NCX expression levels. ET in alpha(2A)/alpha(2C)ARKO mice improved exercise tolerance and systolic function. ET slightly reduced cardiac myocyte width, but unchanged ventricular fibrosis in alpha(2A)/alpha(2C)ARKO mice. ET significantly increased the expression of SERCA2 (20%) and phospho-Ser(16)-PLN (63%), phospho-Thr(17)-PLN (211%) in alpha(2A)/alpha(2C)ARKO mice. Furthermore, ET restored NCX and PP1 expression in alpha(2A)/alpha(2C)ARKO to untrained WT mice levels. Thus, we provide evidence that Ca(2+) handling is impaired in this HF model and that overall VF improved upon ET, which was associated to changes in the net balance of cardiac Ca(2+) handling proteins.


Subject(s)
Calcium-Binding Proteins/genetics , Gene Expression Regulation , Heart Failure/genetics , Myocardium/metabolism , Physical Conditioning, Animal/physiology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Animals , Calcium/metabolism , Calcium-Binding Proteins/metabolism , Exercise Tolerance/physiology , Heart Failure/metabolism , Heart Failure/physiopathology , Heart Rate/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myocardial Contraction , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
9.
Am J Physiol Heart Circ Physiol ; 291(6): H2801-6, 2006 Dec.
Article in English | MEDLINE | ID: mdl-16798817

ABSTRACT

Exercise training improves arterial baroreflex control in heart failure (HF) rabbits. However, the mechanisms involved in the amelioration of baroreflex control are unknown. We tested the hypothesis that exercise training would increase the afferent aortic depressor nerve activity (AODN) sensitivity in ischemic-induced HF rats. Twenty ischemic-induced HF rats were divided into trained (n = 11) and untrained (n = 9) groups. Nine normal control rats were also studied. Power spectral analysis of pulse interval, systolic blood pressure, renal sympathetic nerve activity (RSNA), and AODN were analyzed by means of autoregressive parametric spectral and cross-spectral algorithms. Spontaneous baroreflex sensitivity of heart rate (HR) and RSNA were analyzed during spontaneous variation of systolic blood pressure. Left ventricular end-diastolic pressure was higher in HF rats compared with that in the normal control group (P = 0.0001). Trained HF rats had a peak oxygen uptake higher than untrained rats and similar to normal controls (P = 0.01). Trained HF rats had lower low-frequency [1.8 +/- 0.2 vs. 14.6 +/- 3 normalized units (nu), P = 0.0003] and higher high-frequency (97.9 +/- 0.2 vs. 85.0 +/- 3 nu, P = 0.0005) components of pulse interval than untrained rats. Trained HF rats had higher spontaneous baroreceptor sensitivity of HR (1.19 +/- 0.2 vs. 0.51 +/- 0.1 ms/mmHg, P = 0.003) and RSNA [2.69 +/- 0.4 vs. 1.29 +/- 0.3 arbitrary units (au)/mmHg, P = 0.04] than untrained rats. In HF rats, exercise training increased spontaneous AODN sensitivity toward normal levels (trained HF rats, 1,791 +/- 215; untrained HF rats, 1,150 +/- 158; and normal control rats, 2,064 +/- 327 au/mmHg, P = 0.05). In conclusion, exercise training improves AODN sensitivity in HF rats.


Subject(s)
Aorta/innervation , Aorta/physiology , Baroreflex/physiology , Cardiac Output, Low/physiopathology , Myocardial Ischemia/physiopathology , Physical Conditioning, Animal/physiology , Algorithms , Animals , Blood Pressure/physiology , Cardiac Output, Low/etiology , Heart Rate/physiology , Kidney/innervation , Kidney/physiology , Male , Myocardial Ischemia/complications , Pressoreceptors/physiology , Rats , Rats, Wistar , Sympathetic Nervous System/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...