Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38625670

ABSTRACT

Epicardial interventions have forged new frontiers in cardiac ablation and device therapies. Healthy human hearts typically present with significant adipose tissue layers superficial to the ventricular myocardium and may hinder success or increase the complexities of epicardial interventions. We quantitatively evaluated the distribution of epicardial adipose tissue on the surface of human hearts and provided high-fidelity 3-dimensional reconstructions of these epicardial adipose tissue layers. The regional thickness of adipose tissues was analyzed at 51 anatomical reference points surrounding both ventricles and compared to specific patient demographics. Adipose deposits on the human hearts displayed characteristic patterns, with the thickest accumulations along the interventricular septa (anterior, 9.01 ± 0.50 mm; posterior, 6.78 ± 0.50 mm) and the right ventricular margin (7.44 ± 0.57 mm). We provide one of the most complete characterizations of human epicardial adipose location and relative layer thickness. These results are considered fundamental for an underlying anatomic understanding when performing procedures within the pericardial space.

2.
Pacing Clin Electrophysiol ; 46(9): 1085-1091, 2023 09.
Article in English | MEDLINE | ID: mdl-37428941

ABSTRACT

BACKGROUND: Leadless pacemakers have been developed to avoid some of the complications that are associated transvenous pacemakers. Pericardial effusion is a rare complication of leadless pacemaker implantation, which may result from perforation of the delivery catheter. In this study, we describe preclinical perforation performance of an updated Micra delivery catheter. METHODS: To assess preclinical perforation performance of the updated delivery catheter, three analyses were performed. First, Finite Element Analysis (FEA) computational modeling was performed to estimate the target tissue stress during Micra delivery catheter tenting. Second, benchtop perforation forces of ovine tissue were recorded for the original and updated delivery catheters. Finally, a Monte-Carlo simulation combining human cadaveric Micra implant forces and human ventricular tissue perforation properties was performed to estimate clinical perforation performance. RESULTS: FEA modeling demonstrated a 66% reduction in target tissue stress when using the updated Micra delivery catheter (6.2 vs. 2.2 psi, Original vs. Updated Micra delivery catheter). Updated Micra delivery catheters required 20% more force to perforate porcine ventricular tissues in benchtop testing (µupd  = 26.9N vs. µorg  = 22.4N, p = .01). Monte-Carlo Simulation of catheter performance in human cadaveric tissues predicts 28.5% reduction of catheter-perforated cases with the updated delivery catheter. CONCLUSIONS: This study, using computer modelling and benchtop experimentation, has indicated that increased surface area and rounding of the updated Micra catheter tip significantly improves preclinical perforation performance. It will be important to evaluate the impact of these catheter design changes with robust registry data.


Subject(s)
Pacemaker, Artificial , Humans , Animals , Sheep , Swine , Treatment Outcome , Equipment Design , Heart Ventricles , Cadaver
5.
Heart Rhythm ; 16(3): 443-450, 2019 03.
Article in English | MEDLINE | ID: mdl-30240799

ABSTRACT

BACKGROUND: Permanent His-bundle pacing (HBP) is an attractive, perhaps more physiological, alternative to traditional right ventricular pacing. OBJECTIVE: The purpose of this study was to utilize direct visualization to more comprehensively understand the anatomy central to HBP, correlating electrical lead performance to implant locations along the His-bundle (HB) pathway. METHODS: Canine hearts (n = 5) were isolated and reanimated using Visible Heart methodologies. Medtronic 3830 SelectSecure leads were fixated where His potentials were present. The location of each implant was mapped/binned into 4 regions approximately analogous to the proximal, penetrating, and distal HB. Locational differences in HBP capture and resultant QRS morphology were assessed. RESULTS: Average HBP capture thresholds did not significantly vary with respect to implant location (1.0-ms pulse width; P = .48). The resulting QRS morphologies from HB-paced beats varied in relation to implant location. As leads were placed further distally along the HB, the ratio of paced to native QRS complex duration increased (ΔQRSpaced/ΔQRSnative ratios-region 2: 0.84 ± 0.16; region 3: 1.04 ± 0.42; region 4: 1.74 ± 0.86). CONCLUSION: We demonstrated correlation between the anatomic locations of HBP lead placement and resultant QRS morphologies in a reanimated canine heart model. Proximal placement along the HB pathway resulted in more favorable QRS morphologies, suggesting improved selective HBP capture, with no significant increase in HBP capture thresholds. Pacing the HB in more proximal pathway locations improved the selectivity of HBP and may confer electrical and anatomic benefits relative to distal HBP.


Subject(s)
Atrial Fibrillation/physiopathology , Bundle of His/physiopathology , Cardiac Pacing, Artificial , Pacemaker, Artificial , Action Potentials , Animals , Atrial Fibrillation/diagnosis , Atrial Fibrillation/therapy , Disease Models, Animal , Dogs , Electrocardiography
6.
Pacing Clin Electrophysiol ; 41(12): 1606-1610, 2018 12.
Article in English | MEDLINE | ID: mdl-30341813

ABSTRACT

BACKGROUND: Today, there is no manufacturer-supplied retrieval tool for the Micra™ pacemaker (Medtronic, Minneapolis, MN, USA); therefore, off-the-shelf catheters have been employed for retrievals. The proximal retrieval feature of the Micra™ can be snared and the device is then retracted from the myocardium, pulling the device through the tricuspid valve. This study characterizes the potential risks of Micra™ nitinol tine engagement with the tricuspid sub-valvular apparatus. METHODS: Fresh human hearts nonviable for transplant (n = 10) were obtained from our regional organ procurement agency (LifeSource, Minneapolis, MN, USA). Micra™ fixation tines were affixed to a linear force transducer. Tines were then engaged in tricuspid chordae tendineae to conduct a constant velocity tensile test. Each test was run until tines disengaged from the chordae tendineae or until they released from the valve apparatus. Subsequently, biomechanical failure properties of the valve apparatus and isolated chordae tendineae were determined using a series of uniaxial tensile tests. RESULTS: There were no chordal ruptures observed during our Micra™ tine extraction testing. Chordal failure required 15.0 times the force of extracting a single engaged tine, and 9.0 times the force of extracting two engaged tines. The uniaxial stresses required for isolated chordal failure averaged 17.4 N/mm2 ; failure strains exceeded 150% resting chordal length. CONCLUSIONS: The forces required to rupture tricuspid chordae tendineae significantly exceeded the forces potentially imposed on the chordae during Micra™ device retrievals. We conclude that the fixation tines of the Micra™ device are unlikely to damage the tricuspid apparatus during either implant or retrieval.


Subject(s)
Device Removal , Pacemaker, Artificial , Alloys , Chordae Tendineae/injuries , Equipment Design , Humans , In Vitro Techniques , Tricuspid Valve/injuries
8.
Clin Anat ; 31(5): 661-666, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29700862

ABSTRACT

Epicardial electrophysiological procedures rely on dependable interfacing with the myocardial tissue. For example, epicardial pacing systems must generate sustainable chronic pacing capture, while epicardial ablations must effectively deliver energy to the target hyper-excitable myocytes. The human heart has a significant adipose layer which may impede epicardial procedures. The objective of this study was to quantitatively assess the relative location of epicardial adipose on the human heart, to define locations where epicardial therapies might be performed successfully. We studied perfusion-fixed human hearts (n = 105) in multiple isolated planes including: left ventricular margin, diaphragmatic surface, and anterior right ventricle. Relative adipose distribution was quantitatively assessed via planar images, using a custom-generated image analysis algorithm. In these specimens, 76.7 ± 13.8% of the left ventricular margin, 72.7 ± 11.3% of the diaphragmatic surface, and 92.1 ± 8.7% of the anterior right margin were covered with superficial epicardial adipose layers. Percent adipose coverage significantly increased with age (P < 0.001) and history of coronary artery disease (P < 0.05). No significant relationships were identified between relative percent adipose coverage and gender, body weight or height, BMI, history of hypertension, and/or history of congestive heart failure. Additionally, we describe two-dimensional probability distributions of epicardial adipose coverage for each of the three analysis planes. In this study, we detail the quantitative assessment and probabilistic mapping of the distribution of superficial epicardial adipose on the adult human heart. These findings have implications relative to performing epicardial procedures and/or designing procedures or tools to successfully perform such treatments. Clin. Anat. 31:661-666, 2018. © 2018 Wiley Periodicals, Inc.


Subject(s)
Adiposity , Pericardium/anatomy & histology , Adolescent , Adult , Aged , Aged, 80 and over , Epicardial Mapping , Female , Humans , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...