Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Int J Obes (Lond) ; 40(12): 1864-1874, 2016 12.
Article in English | MEDLINE | ID: mdl-27534841

ABSTRACT

BACKGROUND: A membrane-penetrating cation, dodecyltriphenylphosphonium (C12TPP), facilitates the recycling of fatty acids in the artificial lipid membrane and mitochondria. C12TPP can dissipate mitochondrial membrane potential and may affect total energy expenditure and body weight in animals and humans. METHODS: We investigated the metabolic effects of C12TPP in isolated brown-fat mitochondria, brown adipocyte cultures and mice in vivo. Experimental approaches included the measurement of oxygen consumption, carbon dioxide production, western blotting, magnetic resonance imaging and bomb calorimetry. RESULTS: In mice, C12TPP (50 µmol per (day•kg body weight)) in the drinking water significantly reduced body weight (12%, P<0.001) and body fat mass (24%, P<0.001) during the first 7 days of treatment. C12TPP did not affect water palatability and intake or the energy and lipid content in feces. The addition of C12TPP to isolated brown-fat mitochondria resulted in increased oxygen consumption. Three hours of pretreatment with C12TPP also increased oligomycin-insensitive oxygen consumption in brown adipocyte cultures (P<0.01). The effects of C12TPP on mitochondria, cells and mice were independent of uncoupling protein 1 (UCP1). However, C12TPP treatment increased the mitochondrial protein levels in the brown adipose tissue of both wild-type and UCP1-knockout mice. Pair-feeding revealed that one-third of the body weight loss in C12TPP-treated mice was due to reduced food intake. C12TPP treatment elevated the resting metabolic rate (RMR) by up to 18% (P<0.05) compared with pair-fed animals. C12TPP reduced the respiratory exchange ratio, indicating enhanced fatty acid oxidation in mice. CONCLUSIONS: C12TPP combats diet-induced obesity by reducing food intake, increasing the RMR and enhancing fatty acid oxidation.


Subject(s)
Diet, High-Fat/adverse effects , Mitochondria/metabolism , Obesity/drug therapy , Organophosphorus Compounds/pharmacology , Thermogenesis/physiology , Adipocytes, Brown/metabolism , Adipose Tissue, Brown/metabolism , Animals , Disease Models, Animal , Energy Metabolism , Lipid Metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/drug effects , Mitochondrial Proteins/metabolism , Obesity/etiology , Obesity/metabolism , Obesity/pathology , Organophosphorus Compounds/metabolism , Organophosphorus Compounds/pharmacokinetics , Thermogenesis/drug effects , Uncoupling Protein 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...