Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Biosci (Landmark Ed) ; 28(2): 26, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36866547

ABSTRACT

BACKGROUND: The stemness characteristics of cancer cells, such as self-renewal and tumorigenicity, are considered to be responsible, in part, for tumor metastasis. Epithelial-to-mesenchymal transition (EMT) plays an important role in promoting both stemness and tumor metastasis. Although the traditional medicine juglone is thought to play an anticancer role by affecting cell cycle arrest, induction of apoptosis, and immune regulation, a potential function of juglone in regulating cancer cell stemness characteristics remains unknown. METHODS: In the present study, tumor sphere formation assay and limiting dilution cell transplantation assays were performed to assess the function of juglone in regulating maintenance of cancer cell stemness characteristics. EMT of cancer cells was assessed by western blot and transwell assay in vitro, and a liver metastasis model was also performed to demonstrate the effect of juglone on colorectal cancer cells in vivo. RESULTS: Data gathered indicates juglone inhibits stemness characteristics and EMT in cancer cells. Furthermore, we verified that metastasis was suppressed by juglone treatment. We also observed that these effects were, in part, achieved by inhibiting Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1). CONCLUSIONS: These results indicate that juglone inhibits maintenance of stemness characteristics and metastasis in cancer cells.


Subject(s)
Epithelial-Mesenchymal Transition , Naphthoquinones , Neoplasms , Neoplastic Stem Cells , Apoptosis , Blotting, Western , Neoplasms/drug therapy , Neoplasm Metastasis/prevention & control , Naphthoquinones/pharmacology
2.
Cell Death Dis ; 13(1): 21, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34930897

ABSTRACT

Premature ovarian insufficiency (POI) is a heterogeneous and multifactorial disorder. In recent years, there has been an increasing interest in research on the pathogenesis and treatment of POI, owing to the implementation of the second-child policy in China. Cytoplasmic polyadenylation element-binding protein 3 (CPEB3) is an RNA-binding protein that can bind to specific RNA sequences. CPEB3 can bind to and affect the expression, cellular location, and stability of target RNAs. Cpeb3 is highly expressed in the ovary; however, its functions remain unknown. In this study, Cpeb3-mutant mice were used to characterize the physiological functions of CPEB3. Cpeb3-mutant female mice manifested signs of gradual loss of ovarian follicles, ovarian follicle development arrest, increased follicle atresia, and subfertility with a phenotype analogous to POI in women. Further analysis showed that granulosa cell proliferation was inhibited and apoptosis was markedly increased in Cpeb3-mutant ovaries. In addition, the expression of Gdf9, a potential target of CPEB3, was decreased in Cpeb3-mutant ovaries and oocytes. Altogether, these results reveal that CPEB3 is essential for ovarian follicle development and female fertility as it regulates the expression of Gdf9 in oocytes, disruption of which leads to impaired ovarian follicle development and POI.


Subject(s)
Fertility/genetics , Granulosa Cells/metabolism , Mutation , Primary Ovarian Insufficiency/metabolism , RNA-Binding Proteins/metabolism , Signal Transduction/genetics , Animals , Apoptosis/genetics , CRISPR-Cas Systems , Cell Proliferation/genetics , Disease Models, Animal , Female , Growth Differentiation Factor 9/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oocytes/metabolism , Phenotype , Pregnancy , Primary Ovarian Insufficiency/genetics , RNA-Binding Proteins/genetics
3.
Cell Death Dis ; 11(9): 792, 2020 09 23.
Article in English | MEDLINE | ID: mdl-32968053

ABSTRACT

Cytoplasmic polyadenylation element-binding protein 3 (CPEB3) is a sequence-specific RNA-binding protein. We had reported that CPEB3 is involved in hepatocellular carcinoma (HCC) progression. However, the underlying mechanisms of CPEB3 in HCC remain unclear. In this study, we firstly performed RNA immunoprecipitation to uncover the transcriptome-wide CPEB3-bound mRNAs (CPEB3 binder) in HCC. Bioinformatic analysis indicates that CPEB3 binders are closely related to cancer progression, especially HCC metastasis. Further studies confirmed that metadherin (MTDH) is a direct target of CPEB3. CPEB3 can suppress the translation of MTDH mRNA in vivo and in vitro. Besides, luciferase assay demonstrated that CPEB3 interacted with 3'-untranslated region of MTDH mRNA and inhibited its translation. Subsequently, CPEB3 inhibited the epithelial-mesenchymal transition and metastasis of HCC cells through post-transcriptional regulation of MTDH. In addition, cpeb3 knockout mice are more susceptible to carcinogen-induced hepatocarcinogenesis and subsequent lung metastasis. Our results also indicated that CPEB3 was a good prognosis marker, which is downregulated in HCC tissue. In conclusion, our results demonstrated that CPEB3 played an important role in HCC progression and targeting CPEB3-mediated mRNA translation might be a favorable therapeutic approach.


Subject(s)
Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Membrane Proteins/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Carcinogenesis/genetics , Carcinoma, Hepatocellular/metabolism , Cell Adhesion Molecules/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Liver Neoplasms/metabolism , Membrane Proteins/metabolism
4.
Biochem Biophys Res Commun ; 481(1-2): 169-175, 2016 Dec 02.
Article in English | MEDLINE | ID: mdl-27810363

ABSTRACT

Heme oxygenase (HO) is the rate-limiting enzyme in heme metabolism. HO-1 exhibits anti-oxidative and anti-inflammatory function via the actions of its metabolite, respectively. A growing body of evidence demonstrates that HO-1 is implicated in the pathogenesis and progression of several types of cancer. However, whether HO-1 takes part in healthy-premalignant-malignant transformation is still undefined. In this study, we took advantage of transgenic mice which over-expressed HO-1 dominant negative mutant (HO-1 G143H) and observed its susceptibility to DEN-induced hepatocarcinogenesis. Our results indicate that HO-1 G143H mutant accelerates the progression of tumorigenesis and tumor growth. The mechanism is closely related to enhancement of ROS production which induce more hepatocytes death and secretion of inflammatory cytokines, proliferation of surviving hepatocytes. Our result provides the direct evidence that HO-1 plays an important protective role in liver carcinogenesis. Alternatively, we suggest the possible explanation on effect of HO-1 promoter polymorphism which involved in tumorigenesis.


Subject(s)
Carcinogenesis/genetics , Diethylnitrosamine , Heme Oxygenase-1/genetics , Liver Neoplasms/chemically induced , Liver Neoplasms/genetics , Membrane Proteins/genetics , Animals , Carcinogens , Liver Neoplasms/enzymology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation/genetics , Promoter Regions, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...