Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 8225, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38086829

ABSTRACT

Studies of the Venusian mesosphere provide important information about the current state of the entire Venusian atmosphere. This includes information about the dense cloud structure, its vertical thermal profile, temperature fields, and the resulting dynamical and meteorological processes that contribute to a deeper understanding of the climatologically different evolutionary paths of Earth and Venus. However, the last measurements were acquired in 1983 during Venera-15 mission. In this paper, results of mid-infrared spectral measurements of the Venusian atmosphere are presented. Here we show Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) measurements of the Venusian atmosphere during the second flyby of BepiColombo mission on its way to Mercury. Our Venus measurements provide reliable retrievals of mesospheric temperature profiles and cloud parameters between 60 and 75 km altitude, although MERTIS was only designed to operate in Mercury environment. Our results are in good agreement with the Venera-15 mission findings. This indicates the stability of the Venusian atmosphere on time scales of decades.

2.
Planta ; 259(1): 25, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38108922

ABSTRACT

MAIN CONCLUSION: Xanthoria parietina survivability in Mars-like conditions was supported by water-lysis efficiency recovery and antioxidant content balancing with ROS production after 30 days of exposure. Xanthoria parietina (L.) Th. Fr. is a widespread lichen showing tolerance against air pollutants and UV-radiation. It has been tested under space-like and Mars-like conditions resulting in high recovery performances. Hereby, we aim to assess the mechanisms at the basis of the thalli resilience against multiple space stress factors. Living thalli of X. parietina were exposed to simulated Martian atmospheric conditions (Dark Mars) and UV radiation (Full Mars). Then, we monitored as vitality indicator the photosynthetic efficiency, assessed by in vivo chlorophyll emission fluorescence measurements (FM; FV/F0). The physiological defense was evaluated by analyzing the thalli antioxidant capacity. The drop of FM and FV/F0 immediately after the exposure indicated a reduction of photosynthesis. After 24 h from exposure, photosynthetic efficiency began to recover suggesting the occurrence of protective mechanisms. Antioxidant concentrations were higher during the exposure, only decreasing after 30 days. The recovery of photosynthetic efficiency in both treatments suggested a strong resilience by the photosynthetic apparatus against combined space stress factors, likely due to the boosted antioxidants at the beginning and their depletion at the end of the exposure. The overall results indicated that the production of antioxidants, along with the occurrence of photoprotection mechanisms, guarantee X. parietina survivability in Mars-like environment.


Subject(s)
Mars , Resilience, Psychological , Antioxidants , Extraterrestrial Environment , Oxidative Stress , Photosynthesis
3.
Sci Rep ; 13(1): 4893, 2023 03 25.
Article in English | MEDLINE | ID: mdl-36966209

ABSTRACT

Xanthoria parietina (L.) Th. Fr. is a widely spread foliose lichen showing high tolerance against UV-radiation thanks to parietin, a secondary lichen substance. We exposed samples of X. parietina under simulated Martian conditions for 30 days to explore its survivability. The lichen's vitality was monitored via chlorophyll a fluorescence that gives an indication for active light reaction of photosynthesis, performing in situ and after-treatment analyses. Raman spectroscopy and TEM were used to evaluate carotenoid preservation and possible variations in the photobiont's ultrastructure respectively. Significant differences in the photo-efficiency between UV irradiated samples and dark-kept samples were observed. Fluorescence values correlated with temperature and humidity day-night cycles. The photo-efficiency recovery showed that UV irradiation caused significant effects on the photosynthetic light reaction. Raman spectroscopy showed that the carotenoid signal from UV exposed samples decreased significantly after the exposure. TEM observations confirmed that UV exposed samples were the most affected by the treatment, showing chloroplastidial disorganization in photobionts' cells. Overall, X. parietina was able to survive the simulated Mars conditions, and for this reason it may be considered as a candidate for space long-term space exposure and evaluations of the parietin photodegradability.


Subject(s)
Lichens , Mars , Chlorophyll A , Extraterrestrial Environment , Carotenoids
4.
Life (Basel) ; 11(11)2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34833088

ABSTRACT

The success of an astrobiological search for life campaign on Mars, or other planetary bodies in the Solar System, relies on the detectability of past or present microbial life traces, namely, biosignatures. Spectroscopic methods require little or no sample preparation, can be repeated almost endlessly, and can be performed in contact or even remotely. Such methods are therefore ideally suited to use for the detection of biosignatures, which can be confirmed with supporting instrumentation. Here, we discuss the use of Raman and Fourier Transform Infrared (FT-IR) spectroscopies for the detection and characterization of biosignatures from colonies of the fungus Cryomyces antarcticus, grown on Martian analogues and exposed to increasing doses of UV irradiation under dried conditions. The results report significant UV-induced DNA damage, but the non-exceeding of thresholds for allowing DNA amplification and detection, while the spectral properties of the fungal melanin remained unaltered, and pigment detection and identification was achieved via complementary analytical techniques. Finally, this work found that fungal cell wall compounds, likely chitin, were not degraded, and were still detectable even after high UV irradiation doses. The implications for the preservation and detection of biosignatures in extraterrestrial environments are discussed.

5.
Meteorit Planet Sci ; 56(4): 844-893, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34295141

ABSTRACT

The June 2, 2018, impact of asteroid 2018 LA over Botswana is only the second asteroid detected in space prior to impacting over land. Here, we report on the successful recovery of meteorites. Additional astrometric data refine the approach orbit and define the spin period and shape of the asteroid. Video observations of the fireball constrain the asteroid's position in its orbit and were used to triangulate the location of the fireball's main flare over the Central Kalahari Game Reserve. 23 meteorites were recovered. A consortium study of eight of these classifies Motopi Pan as a HED polymict breccia derived from howardite, cumulate and basaltic eucrite, and diogenite lithologies. Before impact, 2018 LA was a solid rock of ~156 cm diameter with high bulk density ~2.85 g/cm3, a relatively low albedo pv ~ 0.25, no significant opposition effect on the asteroid brightness, and an impact kinetic energy of ~0.2 kt. The orbit of 2018 LA is consistent with an origin at Vesta (or its Vestoids) and delivery into an Earth-impacting orbit via the v6 resonance. The impact that ejected 2018 LA in an orbit towards Earth occurred 22.8 ± 3.8 Ma ago. Zircons record a concordant U-Pb age of 4563 ± 11 Ma and a consistent 207Pb/206Pb age of 4563 ± 6 Ma. A much younger Pb-Pb phosphate resetting age of 4234 ± 41 Ma was found. From this impact chronology, we discuss what is the possible source crater of Motopi Pan and the age of Vesta's Veneneia impact basin.

6.
Appl Microbiol Biotechnol ; 104(14): 6385-6395, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32447439

ABSTRACT

Melanin is a natural pigment present in almost all biological groups, and is composed of indolic polymers and characterized by black-brown colorization. Furthermore, it is one of the pigments produced by extremophiles including those living in the Antarctic desert, and is mainly involved in their protection from high UV radiation, desiccation, salinity and oxidation. Previous studies have shown that melanized species have an increased capability to survive high level of radiation compared with the non-melanized counterpart. Understanding the molecular composition of fungal melanin could help to understand this peculiar capability. Here, we aimed to characterize the melanin pigment extracted from the Antarctic black fungus Cryomyces antarcticus, which is a good test model for radioprotection researches, by studying its chemical properties and spectral data. Our results demonstrated that, in spite of having a specific type of melanin as the majority of fungi, the fungus possesses the ability to produce both 1,8-dihydroxynaphthalene (DHN) and L 3-4 dihydroxyphenylalanine (L-DOPA) melanins, opening interesting scenarios for the protection role against radiation. Researches on fungal melanin have a huge application in different fields, including radioprotection, bioremediation, and biomedical applications. KEY POINTS: • Isolation and characterization by multidisciplinary approaches of fungal melanins. • Discovery that pathways for producing DOPA and DHN are both active even in its extreme habitat. • Hypothesis supporting the possibility of using melanin pigment for radioprotection.


Subject(s)
Ascomycota/chemistry , Melanins/chemistry , Antarctic Regions , Ascomycota/metabolism , Chromatography, High Pressure Liquid , Levodopa/chemistry , Levodopa/metabolism , Mass Spectrometry , Melanins/isolation & purification , Melanins/metabolism , Naphthols/chemistry , Naphthols/metabolism , Spectrum Analysis
7.
Sci Rep ; 9(1): 15200, 2019 Oct 23.
Article in English | MEDLINE | ID: mdl-31645618

ABSTRACT

Emissivity and reflectance spectra have been investigated on two series of silicate glasses, having compositions belonging to alkaline and subalkaline series, covering the most common terrestrial igneous rocks. Glasses were synthesized starting from natural end-members outcropping at Vulcano Island (Aeolian Islands, Italy) and on Snake River Plain (USA). Results show that the shift of the spectra, by taking Christiansen feature (CF) as a reference point, is correlated with SiO2 content, the SCFM factor and/or the degree of polymerization state via the NBO/T and temperature. The more evolved is the composition, the more polymerized the structure, the shorter the wavelength at which CF is observable. CF shift is also dependent on temperature. The shape of the spectra discriminates alkaline character, and it is related to the evolution of Qn structural units. Vulcano alkaline series show larger amount of Q4 and Q3 species even for mafic samples compared to the subalkaline Snake River Plain series. Our results provide new and robust insights for the geochemical characterization of volcanic rocks by remote sensing, with the outlook to infer origin of magmas both on Earth as well as on terrestrial planets or rocky bodies, from emissivity and reflectance spectra.

SELECTION OF CITATIONS
SEARCH DETAIL
...